/* * This file is part of the flashrom project. * * Copyright 2014, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. */ /* * This SPI flash programming interface is designed to talk to a Chromium OS * device over a Raiden USB connection. The USB connection is routed to a * microcontroller running an image compiled from: * * https://chromium.googlesource.com/chromiumos/platform/ec * * The protocol for the USB-SPI bridge is implemented in the following files * in that repository: * * chip/stm32/usb_spi.h * chip/stm32/usb_spi.c * * bInterfaceProtocol determines which protocol is used by the USB SPI device. * * * USB SPI Version 1: * * SPI transactions of up to 62B in each direction with every command having * a response. The initial packet from host contains a 2B header indicating * write and read counts with an optional payload length equal to the write * count. The device will respond with a message that reports the 2B status * code and an optional payload response length equal to read count. * * * Message Packets: * * Command First Packet (Host to Device): * * USB SPI command, containing the number of bytes to write and read * and a payload of bytes to write. * * +------------------+-----------------+------------------------+ * | write count : 1B | read count : 1B | write payload : <= 62B | * +------------------+-----------------+------------------------+ * * write count: 1 byte, zero based count of bytes to write * * read count: 1 byte, zero based count of bytes to read. Full duplex * mode is enabled with UINT8_MAX * * write payload: Up to 62 bytes of data to write to SPI, the total * length of all TX packets must match write count. * Due to data alignment constraints, this must be an * even number of bytes unless this is the final packet. * * Response Packet (Device to Host): * * USB SPI response, containing the status code and any bytes of the * read payload. * * +-------------+-----------------------+ * | status : 2B | read payload : <= 62B | * +-------------+-----------------------+ * * status: 2 byte status * 0x0000: Success * 0x0001: SPI timeout * 0x0002: Busy, try again * This can happen if someone else has acquired the shared memory * buffer that the SPI driver uses as /dev/null * 0x0003: Write count invalid (over 62 bytes) * 0x0004: Read count invalid (over 62 bytes) * 0x0005: The SPI bridge is disabled. * 0x8000: Unknown error mask * The bottom 15 bits will contain the bottom 15 bits from the EC * error code. * * read payload: Up to 62 bytes of data read from SPI, the total * length of all RX packets must match read count * unless an error status was returned. Due to data * alignment constraints, this must be a even number * of bytes unless this is the final packet. * * * USB Error Codes: * * send_command return codes have the following format: * * 0x00000: Status code success. * 0x00001-0x0FFFF: Error code returned by the USB SPI device. * 0x10001-0x1FFFF: Error code returned by the USB SPI host. * 0x20001-0x20063 Lower bits store the positive value representation * of the libusb_error enum. See the libusb documentation: * http://libusb.sourceforge.net/api-1.0/group__misc.html */ #include "programmer.h" #include "spi.h" #include "usb_device.h" #include #include #include #include #include /* FIXME: Add some programmer IDs here */ const struct dev_entry devs_raiden[] = { {0}, }; #define GOOGLE_VID (0x18D1) #define GOOGLE_RAIDEN_SPI_SUBCLASS (0x51) enum { GOOGLE_RAIDEN_SPI_PROTOCOL_V1 = 0x01, GOOGLE_RAIDEN_SPI_PROTOCOL_V2 = 0x02, }; enum { /* The host failed to transfer the data with no libusb error. */ USB_SPI_HOST_TX_BAD_TRANSFER = 0x10001, /* The number of bytes written did not match expected. */ USB_SPI_HOST_TX_WRITE_FAILURE = 0x10002, /* We did not receive the expected USB packet. */ USB_SPI_HOST_RX_UNEXPECTED_PACKET = 0x11001, /* We received a continue packet with an invalid data index. */ USB_SPI_HOST_RX_BAD_DATA_INDEX = 0x11002, /* We received too much data. */ USB_SPI_HOST_RX_DATA_OVERFLOW = 0x11003, /* The number of bytes read did not match expected. */ USB_SPI_HOST_RX_READ_FAILURE = 0x11004, /* We were unable to configure the device. */ USB_SPI_HOST_INIT_FAILURE = 0x12001, }; enum usb_spi_error { USB_SPI_SUCCESS = 0x0000, USB_SPI_TIMEOUT = 0x0001, USB_SPI_BUSY = 0x0002, USB_SPI_WRITE_COUNT_INVALID = 0x0003, USB_SPI_READ_COUNT_INVALID = 0x0004, USB_SPI_DISABLED = 0x0005, USB_SPI_UNKNOWN_ERROR = 0x8000, }; enum raiden_debug_spi_request { RAIDEN_DEBUG_SPI_REQ_ENABLE = 0x0000, RAIDEN_DEBUG_SPI_REQ_DISABLE = 0x0001, RAIDEN_DEBUG_SPI_REQ_ENABLE_AP = 0x0002, RAIDEN_DEBUG_SPI_REQ_ENABLE_EC = 0x0003, }; #define PACKET_HEADER_SIZE (2) #define USB_MAX_PACKET_SIZE (64) #define PAYLOAD_SIZE_V1 (USB_MAX_PACKET_SIZE - PACKET_HEADER_SIZE) /* * Servo Micro has an error where it is capable of acknowledging USB packets * without loading it into the USB endpoint buffers or triggering interrupts. * See crbug.com/952494. Retry mechanisms have been implemented to recover * from these rare failures allowing the process to continue. */ #define WRITE_RETRY_ATTEMPTS (3) #define READ_RETRY_ATTEMPTS (3) #define RETRY_INTERVAL_US (100 * 1000) /* * This timeout is so large because the Raiden SPI timeout is 800ms. */ #define TRANSFER_TIMEOUT_MS (200 + 800) struct raiden_debug_spi_data { struct usb_device *dev; uint8_t in_ep; uint8_t out_ep; }; /* * Version 1 protocol specific attributes */ struct usb_spi_command_v1 { uint8_t write_count; /* UINT8_MAX indicates full duplex mode on compliant devices. */ uint8_t read_count; uint8_t data[PAYLOAD_SIZE_V1]; } __attribute__((packed)); struct usb_spi_response_v1 { uint16_t status_code; uint8_t data[PAYLOAD_SIZE_V1]; } __attribute__((packed)); union usb_spi_packet_v1 { struct usb_spi_command_v1 command; struct usb_spi_response_v1 response; } __attribute__((packed)); struct usb_spi_packet_ctx { union { uint8_t bytes[USB_MAX_PACKET_SIZE]; union usb_spi_packet_v1 packet_v1; }; /* * By storing the number of bytes in the header and knowing that the * USB data packets are all 64B long, we are able to use the header * size to store the offset of the buffer and it's size without * duplicating variables that can go out of sync. */ size_t header_size; /* Number of bytes in the packet */ size_t packet_size; }; struct usb_spi_transmit_ctx { /* Buffer we are reading data from. */ const uint8_t *buffer; /* Number of bytes in the transfer. */ size_t transmit_size; /* Number of bytes transferred. */ size_t transmit_index; }; struct usb_spi_receive_ctx { /* Buffer we are writing data into. */ uint8_t *buffer; /* Number of bytes in the transfer. */ size_t receive_size; /* Number of bytes transferred. */ size_t receive_index; }; /* * This function will return true when an error code can potentially recover * if we attempt to write SPI data to the device or read from it. We know * that some conditions are not recoverable in the current state so allows us * to bypass the retry logic and terminate early. */ static bool retry_recovery(int error_code) { if (error_code < 0x10000) { /* * Handle error codes returned from the device. USB_SPI_TIMEOUT, * USB_SPI_BUSY, and USB_SPI_WRITE_COUNT_INVALID have been observed * during transfer errors to the device and can be recovered. */ if (USB_SPI_READ_COUNT_INVALID <= error_code && error_code <= USB_SPI_DISABLED) { return false; } } else if (usb_device_is_libusb_error(error_code)) { /* Handle error codes returned from libusb. */ if (error_code == LIBUSB_ERROR(LIBUSB_ERROR_NO_DEVICE)) { return false; } } return true; } static const struct raiden_debug_spi_data * get_raiden_data_from_context(const struct flashctx *flash) { return (const struct raiden_debug_spi_data *)flash->mst->spi.data; } /* * Read data into the receive buffer. * * @param dst Destination receive context we are writing data to. * @param src Source packet context we are reading data from. * * @returns status code 0 on success. * USB_SPI_HOST_RX_DATA_OVERFLOW if the source packet is too * large to fit in read buffer. */ static int read_usb_packet(struct usb_spi_receive_ctx *dst, const struct usb_spi_packet_ctx *src) { size_t max_read_length = dst->receive_size - dst->receive_index; size_t bytes_in_buffer = src->packet_size - src->header_size; const uint8_t *packet_buffer = src->bytes + src->header_size; if (bytes_in_buffer > max_read_length) { /* * An error occurred, we should not receive more data than * the buffer can support. */ msg_perr("Raiden: Receive packet overflowed\n" " bytes_in_buffer = %zu\n" " max_read_length = %zu\n" " receive_index = %zu\n" " receive_size = %zu\n", bytes_in_buffer, max_read_length, dst->receive_size, dst->receive_index); return USB_SPI_HOST_RX_DATA_OVERFLOW; } memcpy(dst->buffer + dst->receive_index, packet_buffer, bytes_in_buffer); dst->receive_index += bytes_in_buffer; return 0; } /* * Fill the USB packet with data from the transmit buffer. * * @param dst Destination packet context we are writing data to. * @param src Source transmit context we are reading data from. */ static void fill_usb_packet(struct usb_spi_packet_ctx *dst, struct usb_spi_transmit_ctx *src) { size_t transmit_size = src->transmit_size - src->transmit_index; size_t max_buffer_size = USB_MAX_PACKET_SIZE - dst->header_size; uint8_t *packet_buffer = dst->bytes + dst->header_size; if (transmit_size > max_buffer_size) transmit_size = max_buffer_size; memcpy(packet_buffer, src->buffer + src->transmit_index, transmit_size); dst->packet_size = dst->header_size + transmit_size; src->transmit_index += transmit_size; } /* * Receive the data from the device USB endpoint and store in the packet. * * @param ctx_data Raiden SPI config. * @param packet Destination packet used to store the endpoint data. * * @returns Returns status code with 0 on success. */ static int receive_packet(const struct raiden_debug_spi_data *ctx_data, struct usb_spi_packet_ctx *packet) { int received; int status = LIBUSB(libusb_bulk_transfer(ctx_data->dev->handle, ctx_data->in_ep, packet->bytes, USB_MAX_PACKET_SIZE, &received, TRANSFER_TIMEOUT_MS)); packet->packet_size = received; if (status) { msg_perr("Raiden: IN transfer failed\n" " received = %d\n" " status = 0x%05x\n", received, status); } return status; } /* * Transmit data from the packet to the device's USB endpoint. * * @param ctx_data Raiden SPI config. * @param packet Source packet we will write to the endpoint data. * * @returns Returns status code with 0 on success. */ static int transmit_packet(const struct raiden_debug_spi_data *ctx_data, struct usb_spi_packet_ctx *packet) { int transferred; int status = LIBUSB(libusb_bulk_transfer(ctx_data->dev->handle, ctx_data->out_ep, packet->bytes, packet->packet_size, &transferred, TRANSFER_TIMEOUT_MS)); if (status || (size_t)transferred != packet->packet_size) { if (!status) { /* No error was reported, but we didn't transmit the data expected. */ status = USB_SPI_HOST_TX_BAD_TRANSFER; } msg_perr("Raiden: OUT transfer failed\n" " transferred = %d\n" " packet_size = %zu\n" " status = 0x%05x\n", transferred, packet->packet_size, status); } return status; } /* * Version 1 protocol command to start a USB SPI transfer and write the payload. * * @param ctx_data Raiden SPI config. * @param write Write context of data to transmit and write payload. * @param read Read context of data to receive and read buffer. * * @returns Returns status code with 0 on success. */ static int write_command_v1(const struct raiden_debug_spi_data *ctx_data, struct usb_spi_transmit_ctx *write, struct usb_spi_receive_ctx *read) { struct usb_spi_packet_ctx command = { .header_size = offsetof(struct usb_spi_command_v1, data), .packet_v1.command.write_count = write->transmit_size, .packet_v1.command.read_count = read->receive_size }; /* Reset the write context to the start. */ write->transmit_index = 0; fill_usb_packet(&command, write); return transmit_packet(ctx_data, &command); } /* * Version 1 Protocol: Responsible for reading the response of the USB SPI * transfer. Status codes from the transfer and any read payload are copied * to the read_buffer. * * @param ctx_data Raiden SPI config. * @param write Write context of data to transmit and write payload. * @param read Read context of data to receive and read buffer. * * @returns Returns status code with 0 on success. */ static int read_response_v1(const struct raiden_debug_spi_data *ctx_data, struct usb_spi_transmit_ctx *write, struct usb_spi_receive_ctx *read) { int status; struct usb_spi_packet_ctx response; /* Reset the read context to the start. */ read->receive_index = 0; status = receive_packet(ctx_data, &response); if (status) { /* Return the transfer error since the status_code is unreliable */ return status; } if (response.packet_v1.response.status_code) { return response.packet_v1.response.status_code; } response.header_size = offsetof(struct usb_spi_response_v1, data); status = read_usb_packet(read, &response); return status; } /* * Version 1 Protocol: Sets up a USB SPI transfer, transmits data to the device, * reads the status code and any payload from the device. This will also handle * recovery if an error has occurred. * * @param flash Flash context storing SPI capabilities and USB device * information. * @param write_count Number of bytes to write * @param read_count Number of bytes to read * @param write_buffer Address of write buffer * @param read_buffer Address of buffer to store read data * * @returns Returns status code with 0 on success. */ static int send_command_v1(const struct flashctx *flash, unsigned int write_count, unsigned int read_count, const unsigned char *write_buffer, unsigned char *read_buffer) { int status = -1; struct usb_spi_transmit_ctx write_ctx = { .buffer = write_buffer, .transmit_size = write_count }; struct usb_spi_receive_ctx read_ctx = { .buffer = read_buffer, .receive_size = read_count }; const struct raiden_debug_spi_data *ctx_data = get_raiden_data_from_context(flash); if (write_count > PAYLOAD_SIZE_V1) { msg_perr("Raiden: Invalid write count\n" " write count = %u\n" " max write = %d\n", write_count, PAYLOAD_SIZE_V1); return SPI_INVALID_LENGTH; } if (read_count > PAYLOAD_SIZE_V1) { msg_perr("Raiden: Invalid read count\n" " read count = %d\n" " max read = %d\n", read_count, PAYLOAD_SIZE_V1); return SPI_INVALID_LENGTH; } for (unsigned int write_attempt = 0; write_attempt < WRITE_RETRY_ATTEMPTS; write_attempt++) { status = write_command_v1(ctx_data, &write_ctx, &read_ctx); if (!status && (write_ctx.transmit_index != write_ctx.transmit_size)) { /* No errors were reported, but write is incomplete. */ status = USB_SPI_HOST_TX_WRITE_FAILURE; } if (status) { /* Write operation failed. */ msg_perr("Raiden: Write command failed\n" " write count = %u\n" " read count = %u\n" " transmitted bytes = %zu\n" " write attempt = %u\n" " status = 0x%05x\n", write_count, read_count, write_ctx.transmit_index, write_attempt + 1, status); if (!retry_recovery(status)) { /* Reattempting will not result in a recovery. */ return status; } programmer_delay(RETRY_INTERVAL_US); continue; } for (unsigned int read_attempt = 0; read_attempt < READ_RETRY_ATTEMPTS; read_attempt++) { status = read_response_v1(ctx_data, &write_ctx, &read_ctx); if (!status) { if (read_ctx.receive_size == read_ctx.receive_index) { /* Successful transfer. */ return status; } else { /* Report the error from the failed read. */ status = USB_SPI_HOST_RX_READ_FAILURE; } } if (status) { /* Read operation failed. */ msg_perr("Raiden: Read response failed\n" " write count = %u\n" " read count = %u\n" " received bytes = %zu\n" " write attempt = %u\n" " read attempt = %u\n" " status = 0x%05x\n", write_count, read_count, read_ctx.receive_index, write_attempt + 1, read_attempt + 1, status); if (!retry_recovery(status)) { /* Reattempting will not result in a recovery. */ return status; } programmer_delay(RETRY_INTERVAL_US); } } } return status; } /* * Unfortunately there doesn't seem to be a way to specify the maximum number * of bytes that your SPI device can read/write, these values are the maximum * data chunk size that flashrom will package up with an additional five bytes * of command for the flash device, resulting in a 62 byte packet, that we then * add two bytes to in either direction, making our way up to the 64 byte * maximum USB packet size for the device. * * The largest command that flashrom generates is the byte program command, so * we use that command header maximum size here. */ #define MAX_DATA_SIZE (PAYLOAD_SIZE_V1 - JEDEC_BYTE_PROGRAM_OUTSIZE) static struct spi_master spi_master_raiden_debug = { .features = SPI_MASTER_4BA, .max_data_read = MAX_DATA_SIZE, .max_data_write = MAX_DATA_SIZE, .command = send_command_v1, .multicommand = default_spi_send_multicommand, .read = default_spi_read, .write_256 = default_spi_write_256, .write_aai = default_spi_write_aai, }; static int match_endpoint(struct libusb_endpoint_descriptor const *descriptor, enum libusb_endpoint_direction direction) { return (((descriptor->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) == direction) && ((descriptor->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) == LIBUSB_TRANSFER_TYPE_BULK)); } static int find_endpoints(struct usb_device *dev, uint8_t *in_ep, uint8_t *out_ep) { int i; int in_count = 0; int out_count = 0; for (i = 0; i < dev->interface_descriptor->bNumEndpoints; i++) { struct libusb_endpoint_descriptor const *endpoint = &dev->interface_descriptor->endpoint[i]; if (match_endpoint(endpoint, LIBUSB_ENDPOINT_IN)) { in_count++; *in_ep = endpoint->bEndpointAddress; } else if (match_endpoint(endpoint, LIBUSB_ENDPOINT_OUT)) { out_count++; *out_ep = endpoint->bEndpointAddress; } } if (in_count != 1 || out_count != 1) { msg_perr("Raiden: Failed to find one IN and one OUT endpoint\n" " found %d IN and %d OUT endpoints\n", in_count, out_count); return 1; } msg_pdbg("Raiden: Found IN endpoint = 0x%02x\n", *in_ep); msg_pdbg("Raiden: Found OUT endpoint = 0x%02x\n", *out_ep); return 0; } static int raiden_debug_spi_shutdown(void * data) { struct raiden_debug_spi_data * ctx_data = (struct raiden_debug_spi_data *)data; int ret = LIBUSB(libusb_control_transfer( ctx_data->dev->handle, LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_INTERFACE, RAIDEN_DEBUG_SPI_REQ_DISABLE, 0, ctx_data->dev->interface_descriptor->bInterfaceNumber, NULL, 0, TRANSFER_TIMEOUT_MS)); if (ret != 0) { msg_perr("Raiden: Failed to disable SPI bridge\n"); return ret; } usb_device_free(ctx_data->dev); libusb_exit(NULL); free(ctx_data); return 0; } static int get_target(void) { int request_enable = RAIDEN_DEBUG_SPI_REQ_ENABLE; char *target_str = extract_programmer_param("target"); if (target_str) { if (!strcasecmp(target_str, "ap")) request_enable = RAIDEN_DEBUG_SPI_REQ_ENABLE_AP; else if (!strcasecmp(target_str, "ec")) request_enable = RAIDEN_DEBUG_SPI_REQ_ENABLE_EC; else { msg_perr("Invalid target: %s\n", target_str); request_enable = -1; } } free(target_str); return request_enable; } static void free_dev_list(struct usb_device **dev_lst) { struct usb_device *dev = *dev_lst; /* free devices we don't care about */ dev = dev->next; while (dev) dev = usb_device_free(dev); } int raiden_debug_spi_init(void) { struct usb_match match; char *serial = extract_programmer_param("serial"); struct usb_device *current; struct usb_device *device = NULL; int found = 0; int ret; int request_enable = get_target(); if (request_enable < 0) { free(serial); return 1; } usb_match_init(&match); usb_match_value_default(&match.vid, GOOGLE_VID); usb_match_value_default(&match.class, LIBUSB_CLASS_VENDOR_SPEC); usb_match_value_default(&match.subclass, GOOGLE_RAIDEN_SPI_SUBCLASS); usb_match_value_default(&match.protocol, GOOGLE_RAIDEN_SPI_PROTOCOL_V1); ret = LIBUSB(libusb_init(NULL)); if (ret != 0) { msg_perr("Raiden: libusb_init failed\n"); free(serial); return ret; } ret = usb_device_find(&match, ¤t); if (ret != 0) { msg_perr("Raiden: Failed to find devices\n"); free(serial); return ret; } uint8_t in_endpoint = 0; uint8_t out_endpoint = 0; while (current) { device = current; if (find_endpoints(device, &in_endpoint, &out_endpoint)) { msg_pdbg("Raiden: Failed to find valid endpoints on device"); usb_device_show(" ", current); goto loop_end; } if (usb_device_claim(device)) { msg_pdbg("Raiden: Failed to claim USB device"); usb_device_show(" ", current); goto loop_end; } if (!serial) { found = 1; goto loop_end; } else { unsigned char dev_serial[32]; struct libusb_device_descriptor descriptor; int rc; memset(dev_serial, 0, sizeof(dev_serial)); if (libusb_get_device_descriptor(device->device, &descriptor)) { msg_pdbg("USB: Failed to get device descriptor.\n"); goto loop_end; } rc = libusb_get_string_descriptor_ascii(device->handle, descriptor.iSerialNumber, dev_serial, sizeof(dev_serial)); if (rc < 0) { LIBUSB(rc); } else { if (strcmp(serial, (char *)dev_serial)) { msg_pdbg("Raiden: Serial number %s did not match device", serial); usb_device_show(" ", current); } else { msg_pinfo("Raiden: Serial number %s matched device", serial); usb_device_show(" ", current); found = 1; } } } loop_end: if (found) break; else current = usb_device_free(current); } if (!device || !found) { msg_perr("Raiden: No usable device found.\n"); free(serial); return 1; } free_dev_list(¤t); ret = LIBUSB(libusb_control_transfer( device->handle, LIBUSB_ENDPOINT_OUT | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_INTERFACE, request_enable, 0, device->interface_descriptor->bInterfaceNumber, NULL, 0, TRANSFER_TIMEOUT_MS)); if (ret != 0) { msg_perr("Raiden: Failed to enable SPI bridge\n"); return ret; } /* * Allow for power to settle on the AP and EC flash devices. * Load switches can have a 1-3 ms turn on time, and SPI flash devices * can require up to 10 ms from power on to the first write. */ if ((request_enable == RAIDEN_DEBUG_SPI_REQ_ENABLE_AP) || (request_enable == RAIDEN_DEBUG_SPI_REQ_ENABLE_EC)) usleep(50 * 1000); struct raiden_debug_spi_data *data = calloc(1, sizeof(struct raiden_debug_spi_data)); if (!data) { msg_perr("Unable to allocate space for extra SPI master data.\n"); return SPI_GENERIC_ERROR; } data->dev = device; data->in_ep = in_endpoint; data->out_ep = out_endpoint; spi_master_raiden_debug.data = data; register_spi_master(&spi_master_raiden_debug); register_shutdown(raiden_debug_spi_shutdown, data); return 0; }