1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-26 14:42:36 +02:00
flashrom/udelay_dos.c
Peter Marheine 59c4597071 Make sleep threshold for delays configurable
This allows the minimum time that default_delay() will choose to sleep
for instead of polling to be configured at build-time. The default
remains unchanged at 100 milliseconds for now.

The test's correctness has been checked by testing with minimum sleep
time left at its default and set to a non-default value smaller than 100
microseconds (both pass without sleeping, verified with strace) and with
the minimum sleep time set to 0 (causing the test to be skipped). The
configured value from the macro needs to be stored in a const to avoid
-Werror=type-limits errors when configured to be zero.

Change-Id: Ida96e0816ac914ed69d6fd82ad90ebe89cdef1cc
Signed-off-by: Peter Marheine <pmarheine@chromium.org>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/81606
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Anastasia Klimchuk <aklm@chromium.org>
2024-05-09 01:03:04 +00:00

173 lines
4.5 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2009,2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdbool.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>
#include <sys/time.h>
#include <stdlib.h>
#include <limits.h>
#include "flash.h"
#include "programmer.h"
/* loops per microsecond */
static unsigned long micro = 1;
__attribute__ ((noinline)) static void myusec_delay(unsigned int usecs)
{
unsigned long i;
for (i = 0; i < usecs * micro; i++) {
/* Make sure the compiler doesn't optimize the loop away. */
__asm__ volatile ("" : : "rm" (i) );
}
}
static unsigned long measure_os_delay_resolution(void)
{
unsigned long timeusec;
struct timeval start, end;
unsigned long counter = 0;
gettimeofday(&start, NULL);
timeusec = 0;
while (!timeusec && (++counter < 1000000000)) {
gettimeofday(&end, NULL);
timeusec = 1000000 * (end.tv_sec - start.tv_sec) +
(end.tv_usec - start.tv_usec);
/* Protect against time going forward too much. */
if ((end.tv_sec > start.tv_sec) &&
((end.tv_sec - start.tv_sec) >= LONG_MAX / 1000000 - 1))
timeusec = 0;
/* Protect against time going backwards during leap seconds. */
if ((end.tv_sec < start.tv_sec) || (timeusec > LONG_MAX))
timeusec = 0;
}
return timeusec;
}
static unsigned long measure_delay(unsigned int usecs)
{
unsigned long timeusec;
struct timeval start, end;
gettimeofday(&start, NULL);
myusec_delay(usecs);
gettimeofday(&end, NULL);
timeusec = 1000000 * (end.tv_sec - start.tv_sec) +
(end.tv_usec - start.tv_usec);
/* Protect against time going forward too much. */
if ((end.tv_sec > start.tv_sec) &&
((end.tv_sec - start.tv_sec) >= LONG_MAX / 1000000 - 1))
timeusec = LONG_MAX;
/* Protect against time going backwards during leap seconds. */
if ((end.tv_sec < start.tv_sec) || (timeusec > LONG_MAX))
timeusec = 1;
return timeusec;
}
static void myusec_calibrate_delay(void)
{
unsigned long count = 1000;
unsigned long timeusec, resolution;
int i, tries = 0;
msg_pinfo("Calibrating delay loop... ");
/* Timing resolution on DJGPP is about 50ms, but measure it precisely. */
resolution = measure_os_delay_resolution();
if (resolution) {
msg_pdbg("OS timer resolution is %lu usecs, ", resolution);
} else {
msg_pinfo("OS timer resolution is unusable. ");
}
recalibrate:
count = 1000;
while (1) {
timeusec = measure_delay(count);
if (timeusec > 1000000 / 4)
break;
if (count >= ULONG_MAX / 2) {
msg_pinfo("timer loop overflow, reduced precision. ");
break;
}
count *= 2;
}
tries ++;
/* Avoid division by zero, but in that case the loop is shot anyway. */
if (!timeusec)
timeusec = 1;
/* Compute rounded up number of loops per microsecond. */
micro = (count * micro) / timeusec + 1;
msg_pdbg("%luM loops per second, ", micro);
/* Did we try to recalibrate less than 5 times? */
if (tries < 5) {
/* Recheck our timing to make sure we weren't just hitting
* a scheduler delay or something similar.
*/
for (i = 0; i < 4; i++) {
timeusec = measure_delay(resolution * 10) *
100 / (resolution * 10);
if (timeusec < 90) {
msg_pdbg("delay more than 10%% too short (got "
"%lu%% of expected delay), "
"recalculating... ", timeusec);
goto recalibrate;
}
}
} else {
msg_perr("delay loop is unreliable, trying to continue ");
}
/* We're interested in the actual precision. */
timeusec = measure_delay(resolution * 4);
msg_pdbg("%ld myus = %ld us, ", resolution * 4, timeusec);
msg_pinfo("OK.\n");
}
/* Not very precise sleep. */
void internal_sleep(unsigned int usecs)
{
sleep(usecs / 1000000);
usleep(usecs % 1000000);
}
static const unsigned min_sleep = CONFIG_DELAY_MINIMUM_SLEEP_US;
/* Precise delay. */
void default_delay(unsigned int usecs)
{
static bool calibrated = false;
if (usecs < min_sleep) {
if (!calibrated) {
myusec_calibrate_delay();
calibrated = true;
}
myusec_delay(usecs);
} else {
internal_sleep(usecs);
}
}