1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-09-17 18:35:24 +02:00
Files
flashrom/nicintel_eeprom.c
Antonio Vázquez Blanco 05976c7e93 pcidev.h: Extract pcidev declarations to a separate header
This patch moves all the declarations relevant to PCI into their own
header in include/pcidev.h
This is a simple refactor that aims to simplify maintenance and to
clarify file dependency inside the project.
Currently, most of the declarations reside in programmer.h making it
difficult to really understand file dependency.

Change-Id: Ie7cefa012d43e03d2d3886f1567ad9b3fe1b148c
Signed-off-by: Antonio Vázquez Blanco <antoniovazquezblanco@gmail.com>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/89094
Reviewed-by: Anastasia Klimchuk <aklm@chromium.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2025-09-17 12:29:32 +00:00

543 lines
14 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2013 Ricardo Ribalda - Qtechnology A/S
* Copyright (C) 2011, 2014 Stefan Tauner
*
* Based on nicinctel_spi.c and ichspi.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Datasheet: Intel 82580 Quad/Dual Gigabit Ethernet LAN Controller Datasheet
* 3.3.1.4: General EEPROM Software Access
* 4.7: Access to shared resources (FIXME: we should probably use this semaphore interface)
* 7.4: Register Descriptions
*/
/*
* Datasheet: Intel Ethernet Controller I210: Datasheet
* 8.4.3: EEPROM-Mode Read Register
* 8.4.6: EEPROM-Mode Write Register
* Write process inspired on kernel e1000_i210.c
*/
#include <stdlib.h>
#include <unistd.h>
#include "spi.h"
#include "programmer.h"
#include "hwaccess_physmap.h"
#include "platform/pci.h"
#include "platform/udelay.h"
#include "pcidev.h"
#define PCI_VENDOR_ID_INTEL 0x8086
#define MEMMAP_SIZE 0x1c /* Only EEC, EERD and EEWR are needed. */
#define EEC 0x10 /* EEPROM/Flash Control Register */
#define EERD 0x14 /* EEPROM Read Register */
#define EEWR 0x18 /* EEPROM Write Register */
/* EPROM/Flash Control Register bits */
#define EE_SCK 0
#define EE_CS 1
#define EE_SI 2
#define EE_SO 3
#define EE_REQ 6
#define EE_GNT 7
#define EE_PRES 8
#define EE_SIZE 11
#define EE_SIZE_MASK 0xf
#define EE_FLUPD 23
#define EE_FLUDONE 26
/* EEPROM Read Register bits */
#define EERD_START 0
#define EERD_DONE 1
#define EERD_ADDR 2
#define EERD_DATA 16
/* EEPROM Write Register bits */
#define EEWR_CMDV 0
#define EEWR_DONE 1
#define EEWR_ADDR 2
#define EEWR_DATA 16
#define EE_PAGE_MASK 0x3f
#define UNPROG_DEVICE 0x1509
struct nicintel_eeprom_data {
struct pci_dev *nicintel_pci;
uint8_t *nicintel_eebar;
/* Intel 82580 variable(s) */
uint32_t eec;
/* Intel I210 variable(s) */
bool done_i210_write;
};
/*
* Warning: is_i210() below makes assumptions on these PCI ids.
* It may have to be updated when this list is extended.
*/
static const struct dev_entry nics_intel_ee[] = {
{PCI_VENDOR_ID_INTEL, 0x150e, OK, "Intel", "82580 Quad Gigabit Ethernet Controller (Copper)"},
{PCI_VENDOR_ID_INTEL, 0x150f, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Fiber)"},
{PCI_VENDOR_ID_INTEL, 0x1510, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Backplane)"},
{PCI_VENDOR_ID_INTEL, 0x1511, NT , "Intel", "82580 Quad Gigabit Ethernet Controller (Ext. PHY)"},
{PCI_VENDOR_ID_INTEL, 0x1511, NT , "Intel", "82580 Dual Gigabit Ethernet Controller (Copper)"},
{PCI_VENDOR_ID_INTEL, UNPROG_DEVICE, OK, "Intel", "Unprogrammed 82580 Quad/Dual Gigabit Ethernet Controller"},
{PCI_VENDOR_ID_INTEL, 0x1531, OK, "Intel", "I210 Gigabit Network Connection Unprogrammed"},
{PCI_VENDOR_ID_INTEL, 0x1532, NT, "Intel", "I211 Gigabit Network Connection Unprogrammed"},
{PCI_VENDOR_ID_INTEL, 0x1533, OK, "Intel", "I210 Gigabit Network Connection"},
{PCI_VENDOR_ID_INTEL, 0x1536, NT, "Intel", "I210 Gigabit Network Connection SERDES Fiber"},
{PCI_VENDOR_ID_INTEL, 0x1537, NT, "Intel", "I210 Gigabit Network Connection SERDES Backplane"},
{PCI_VENDOR_ID_INTEL, 0x1538, NT, "Intel", "I210 Gigabit Network Connection SGMII"},
{PCI_VENDOR_ID_INTEL, 0x1539, NT, "Intel", "I211 Gigabit Network Connection"},
{0},
};
static inline bool is_i210(uint16_t device_id)
{
return (device_id & 0xfff0) == 0x1530;
}
static int nicintel_ee_probe_i210(struct flashctx *flash)
{
/* Emulated eeprom has a fixed size of 4 KB */
flash->chip->total_size = 4;
flash->chip->page_size = flash->chip->total_size * 1024;
flash->chip->tested = TEST_OK_PREWB;
flash->chip->gran = WRITE_GRAN_1BYTE_IMPLICIT_ERASE;
flash->chip->block_erasers->eraseblocks[0].size = flash->chip->page_size;
flash->chip->block_erasers->eraseblocks[0].count = 1;
return 1;
}
static int nicintel_ee_probe_82580(struct flashctx *flash)
{
const struct nicintel_eeprom_data *data = flash->mst->opaque.data;
if (data->nicintel_pci->device_id == UNPROG_DEVICE)
flash->chip->total_size = 16; /* Fall back to minimum supported size. */
else {
uint32_t tmp = pci_mmio_readl(data->nicintel_eebar + EEC);
tmp = ((tmp >> EE_SIZE) & EE_SIZE_MASK);
switch (tmp) {
case 7:
flash->chip->total_size = 16;
break;
case 8:
flash->chip->total_size = 32;
break;
default:
msg_cerr("Unsupported chip size 0x%"PRIx32"\n", tmp);
return 0;
}
}
flash->chip->page_size = EE_PAGE_MASK + 1;
flash->chip->tested = TEST_OK_PREWB;
flash->chip->gran = WRITE_GRAN_1BYTE_IMPLICIT_ERASE;
flash->chip->block_erasers->eraseblocks[0].size = (EE_PAGE_MASK + 1);
flash->chip->block_erasers->eraseblocks[0].count = (flash->chip->total_size * 1024) / (EE_PAGE_MASK + 1);
return 1;
}
#define MAX_ATTEMPTS 10000000
static int nicintel_ee_read_word(uint8_t *eebar, unsigned int addr, uint16_t *data)
{
uint32_t tmp = BIT(EERD_START) | (addr << EERD_ADDR);
pci_mmio_writel(tmp, eebar + EERD);
/* Poll done flag. 10.000.000 cycles seem to be enough. */
uint32_t i;
for (i = 0; i < MAX_ATTEMPTS; i++) {
tmp = pci_mmio_readl(eebar + EERD);
if (tmp & BIT(EERD_DONE)) {
*data = (tmp >> EERD_DATA) & 0xffff;
return 0;
}
}
return -1;
}
static int nicintel_ee_read(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
const struct nicintel_eeprom_data *opaque_data = flash->mst->opaque.data;
uint16_t data;
/* The NIC interface always reads 16 b words so we need to convert the address and handle odd address
* explicitly at the start (and also at the end in the loop below). */
if (addr & 1) {
if (nicintel_ee_read_word(opaque_data->nicintel_eebar, addr / 2, &data))
return -1;
*buf++ = data & 0xff;
addr++;
len--;
}
while (len > 0) {
if (nicintel_ee_read_word(opaque_data->nicintel_eebar, addr / 2, &data))
return -1;
*buf++ = data & 0xff;
addr++;
len--;
if (len > 0) {
*buf++ = (data >> 8) & 0xff;
addr++;
len--;
}
}
return 0;
}
static int nicintel_ee_write_word_i210(uint8_t *eebar, unsigned int addr, uint16_t data)
{
uint32_t eewr;
eewr = addr << EEWR_ADDR;
eewr |= data << EEWR_DATA;
eewr |= BIT(EEWR_CMDV);
pci_mmio_writel(eewr, eebar + EEWR);
default_delay(5);
int i;
for (i = 0; i < MAX_ATTEMPTS; i++)
if (pci_mmio_readl(eebar + EEWR) & BIT(EEWR_DONE))
return 0;
return -1;
}
static int nicintel_ee_write_i210(struct flashctx *flash, const uint8_t *buf,
unsigned int addr, unsigned int len)
{
struct nicintel_eeprom_data *opaque_data = flash->mst->opaque.data;
opaque_data->done_i210_write = true;
if (addr & 1) {
uint16_t data;
if (nicintel_ee_read_word(opaque_data->nicintel_eebar, addr / 2, &data)) {
msg_perr("Timeout reading heading byte\n");
return -1;
}
data &= 0xff;
data |= (buf ? (buf[0]) : 0xff) << 8;
if (nicintel_ee_write_word_i210(opaque_data->nicintel_eebar, addr / 2, data)) {
msg_perr("Timeout writing heading word\n");
return -1;
}
if (buf)
buf ++;
addr ++;
len --;
}
while (len > 0) {
uint16_t data;
if (len == 1) {
if (nicintel_ee_read_word(opaque_data->nicintel_eebar, addr / 2, &data)) {
msg_perr("Timeout reading tail byte\n");
return -1;
}
data &= 0xff00;
data |= buf ? (buf[0]) : 0xff;
} else {
if (buf)
data = buf[0] | (buf[1] << 8);
else
data = 0xffff;
}
if (nicintel_ee_write_word_i210(opaque_data->nicintel_eebar, addr / 2, data)) {
msg_perr("Timeout writing Shadow RAM\n");
return -1;
}
if (buf)
buf += 2;
if (len > 2)
len -= 2;
else
len = 0;
addr += 2;
}
return 0;
}
static int nicintel_ee_erase_i210(struct flashctx *flash, unsigned int addr, unsigned int len)
{
return nicintel_ee_write_i210(flash, NULL, addr, len);
}
static int nicintel_ee_bitset(uint8_t *eebar, int reg, int bit, bool val)
{
uint32_t tmp;
tmp = pci_mmio_readl(eebar + reg);
if (val)
tmp |= BIT(bit);
else
tmp &= ~BIT(bit);
pci_mmio_writel(tmp, eebar + reg);
return -1;
}
/* Shifts one byte out while receiving another one by bitbanging (denoted "direct access" in the datasheet). */
static int nicintel_ee_bitbang(uint8_t *eebar, uint8_t mosi, uint8_t *miso)
{
uint8_t out = 0x0;
int i;
for (i = 7; i >= 0; i--) {
nicintel_ee_bitset(eebar, EEC, EE_SI, mosi & BIT(i));
nicintel_ee_bitset(eebar, EEC, EE_SCK, 1);
if (miso != NULL) {
uint32_t tmp = pci_mmio_readl(eebar + EEC);
if (tmp & BIT(EE_SO))
out |= BIT(i);
}
nicintel_ee_bitset(eebar, EEC, EE_SCK, 0);
}
if (miso != NULL)
*miso = out;
return 0;
}
/* Polls the WIP bit of the status register of the attached EEPROM via bitbanging. */
static int nicintel_ee_ready(uint8_t *eebar)
{
unsigned int i;
for (i = 0; i < 1000; i++) {
nicintel_ee_bitset(eebar, EEC, EE_CS, 0);
nicintel_ee_bitbang(eebar, JEDEC_RDSR, NULL);
uint8_t rdsr;
nicintel_ee_bitbang(eebar, 0x00, &rdsr);
nicintel_ee_bitset(eebar, EEC, EE_CS, 1);
default_delay(1);
if (!(rdsr & SPI_SR_WIP)) {
return 0;
}
}
return -1;
}
/* Requests direct access to the SPI pins. */
static int nicintel_ee_req(uint8_t *eebar)
{
uint32_t tmp;
nicintel_ee_bitset(eebar, EEC, EE_REQ, 1);
tmp = pci_mmio_readl(eebar + EEC);
if (!(tmp & BIT(EE_GNT))) {
msg_perr("Enabling eeprom access failed.\n");
return 1;
}
nicintel_ee_bitset(eebar, EEC, EE_SCK, 0);
return 0;
}
static int nicintel_ee_write_82580(struct flashctx *flash, const uint8_t *buf, unsigned int addr, unsigned int len)
{
const struct nicintel_eeprom_data *opaque_data = flash->mst->opaque.data;
uint8_t *eebar = opaque_data->nicintel_eebar;
if (nicintel_ee_req(eebar))
return -1;
int ret = -1;
if (nicintel_ee_ready(eebar))
goto out;
while (len > 0) {
/* WREN */
nicintel_ee_bitset(eebar, EEC, EE_CS, 0);
nicintel_ee_bitbang(eebar, JEDEC_WREN, NULL);
nicintel_ee_bitset(eebar, EEC, EE_CS, 1);
default_delay(1);
/* data */
nicintel_ee_bitset(eebar, EEC, EE_CS, 0);
nicintel_ee_bitbang(eebar, JEDEC_BYTE_PROGRAM, NULL);
nicintel_ee_bitbang(eebar, (addr >> 8) & 0xff, NULL);
nicintel_ee_bitbang(eebar, addr & 0xff, NULL);
while (len > 0) {
nicintel_ee_bitbang(eebar, (buf) ? *buf++ : 0xff, NULL);
len--;
addr++;
if (!(addr & EE_PAGE_MASK))
break;
}
nicintel_ee_bitset(eebar, EEC, EE_CS, 1);
default_delay(1);
if (nicintel_ee_ready(eebar))
goto out;
}
ret = 0;
out:
nicintel_ee_bitset(eebar, EEC, EE_REQ, 0); /* Give up direct access. */
return ret;
}
static int nicintel_ee_erase_82580(struct flashctx *flash, unsigned int addr, unsigned int len)
{
return nicintel_ee_write_82580(flash, NULL, addr, len);
}
static int nicintel_ee_shutdown_i210(void *opaque_data)
{
struct nicintel_eeprom_data *data = opaque_data;
int ret = 0;
if (!data->done_i210_write)
goto out;
uint32_t flup = pci_mmio_readl(data->nicintel_eebar + EEC);
flup |= BIT(EE_FLUPD);
pci_mmio_writel(flup, data->nicintel_eebar + EEC);
int i;
for (i = 0; i < MAX_ATTEMPTS; i++)
if (pci_mmio_readl(data->nicintel_eebar + EEC) & BIT(EE_FLUDONE))
goto out;
ret = -1;
msg_perr("Flash update failed\n");
out:
free(data);
return ret;
}
static int nicintel_ee_shutdown_82580(void *opaque_data)
{
struct nicintel_eeprom_data *data = opaque_data;
uint8_t *eebar = data->nicintel_eebar;
int ret = 0;
if (data->nicintel_pci->device_id != UNPROG_DEVICE) {
uint32_t old_eec = data->eec;
/* Request bitbanging and unselect the chip first to be safe. */
if (nicintel_ee_req(eebar) || nicintel_ee_bitset(eebar, EEC, EE_CS, 1)) {
ret = -1;
goto out;
}
/* Try to restore individual bits we care about. */
ret = nicintel_ee_bitset(eebar, EEC, EE_SCK, old_eec & BIT(EE_SCK));
ret |= nicintel_ee_bitset(eebar, EEC, EE_SI, old_eec & BIT(EE_SI));
ret |= nicintel_ee_bitset(eebar, EEC, EE_CS, old_eec & BIT(EE_CS));
/* REQ will be cleared by hardware anyway after 2 seconds of inactivity
* on the SPI pins (3.3.2.1). */
ret |= nicintel_ee_bitset(eebar, EEC, EE_REQ, old_eec & BIT(EE_REQ));
}
out:
free(data);
return ret;
}
static const struct opaque_master opaque_master_nicintel_ee_82580 = {
.probe = nicintel_ee_probe_82580,
.read = nicintel_ee_read,
.write = nicintel_ee_write_82580,
.erase = nicintel_ee_erase_82580,
.shutdown = nicintel_ee_shutdown_82580,
};
static const struct opaque_master opaque_master_nicintel_ee_i210 = {
.probe = nicintel_ee_probe_i210,
.read = nicintel_ee_read,
.write = nicintel_ee_write_i210,
.erase = nicintel_ee_erase_i210,
.shutdown = nicintel_ee_shutdown_i210,
};
static int nicintel_ee_init(const struct programmer_cfg *cfg)
{
const struct opaque_master *mst;
uint32_t eec = 0;
uint8_t *eebar;
struct pci_dev *dev = pcidev_init(cfg, nics_intel_ee, PCI_BASE_ADDRESS_0);
if (!dev)
return 1;
uint32_t io_base_addr = pcidev_readbar(dev, PCI_BASE_ADDRESS_0);
if (!io_base_addr)
return 1;
if (!is_i210(dev->device_id)) {
eebar = rphysmap("Intel Gigabit NIC w/ SPI EEPROM", io_base_addr, MEMMAP_SIZE);
if (!eebar)
return 1;
if (dev->device_id != UNPROG_DEVICE) {
eec = pci_mmio_readl(eebar + EEC);
/* C.f. 3.3.1.5 for the detection mechanism (maybe? contradicting
the EE_PRES definition),
and 3.3.1.7 for possible recovery. */
if (!(eec & BIT(EE_PRES))) {
msg_perr("Controller reports no EEPROM is present.\n");
return 1;
}
}
mst = &opaque_master_nicintel_ee_82580;
} else {
eebar = rphysmap("Intel i210 NIC w/ emulated EEPROM",
io_base_addr + 0x12000, MEMMAP_SIZE);
if (!eebar)
return 1;
mst = &opaque_master_nicintel_ee_i210;
}
struct nicintel_eeprom_data *data = calloc(1, sizeof(*data));
if (!data) {
msg_perr("Unable to allocate space for OPAQUE master data\n");
return 1;
}
data->nicintel_pci = dev;
data->nicintel_eebar = eebar;
data->eec = eec;
data->done_i210_write = false;
return register_opaque_master(mst, data);
}
const struct programmer_entry programmer_nicintel_eeprom = {
.name = "nicintel_eeprom",
.type = PCI,
.devs.dev = nics_intel_ee,
.init = nicintel_ee_init,
};