1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-26 22:52:34 +02:00
flashrom/spi25_statusreg.c
Edward O'Callaghan 0c774d6b6a tree/: Convert unlock func ptr into enumerate values
Converting the blockprotect unlock function pointer
within the flashchip struct into enum values allows for
the flashchips db to be turn into pure, declarative data.
A nice side-effect of this is to reduce link-time symbol
space of chipdrivers and increase modularity of the
spi25_statusreg.c and related implementations.

BUG=none
TEST=ninja test.

Change-Id: Ie5c5db1b09d07e1a549990d6f5a622fae4c83233
Signed-off-by: Edward O'Callaghan <quasisec@google.com>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/69933
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Sam McNally <sammc@google.com>
Reviewed-by: Anastasia Klimchuk <aklm@chromium.org>
2023-03-20 00:36:56 +00:00

1040 lines
32 KiB
C

/*
* This file is part of the flashrom project.
* It handles everything related to status registers of the JEDEC family 25.
*
* Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
* Copyright (C) 2008 coresystems GmbH
* Copyright (C) 2008 Ronald Hoogenboom <ronald@zonnet.nl>
* Copyright (C) 2012 Stefan Tauner
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdlib.h>
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
/* === Generic functions === */
/*
* Writing SR2 or higher with an extended WRSR command requires
* writing all lower SRx along with it, so just read the lower
* SRx and write them back.
*/
static int spi_prepare_wrsr_ext(
uint8_t write_cmd[4], size_t *const write_cmd_len,
const struct flashctx *const flash,
const enum flash_reg reg, const uint8_t value)
{
enum flash_reg reg_it;
size_t i = 0;
write_cmd[i++] = JEDEC_WRSR;
for (reg_it = STATUS1; reg_it < reg; ++reg_it) {
uint8_t sr;
if (spi_read_register(flash, reg_it, &sr)) {
msg_cerr("Writing SR%d failed: failed to read SR%d for writeback.\n",
reg - STATUS1 + 1, reg_it - STATUS1 + 1);
return 1;
}
write_cmd[i++] = sr;
}
write_cmd[i++] = value;
*write_cmd_len = i;
return 0;
}
int spi_write_register(const struct flashctx *flash, enum flash_reg reg, uint8_t value)
{
int feature_bits = flash->chip->feature_bits;
uint8_t write_cmd[4];
size_t write_cmd_len = 0;
/*
* Create SPI write command sequence based on the destination register
* and the chip's supported command set.
*/
switch (reg) {
case STATUS1:
write_cmd[0] = JEDEC_WRSR;
write_cmd[1] = value;
write_cmd_len = JEDEC_WRSR_OUTSIZE;
break;
case STATUS2:
if (feature_bits & FEATURE_WRSR2) {
write_cmd[0] = JEDEC_WRSR2;
write_cmd[1] = value;
write_cmd_len = JEDEC_WRSR2_OUTSIZE;
break;
}
if (feature_bits & FEATURE_WRSR_EXT2) {
if (spi_prepare_wrsr_ext(write_cmd, &write_cmd_len, flash, reg, value))
return 1;
break;
}
msg_cerr("Cannot write SR2: unsupported by chip\n");
return 1;
case STATUS3:
if (feature_bits & FEATURE_WRSR3) {
write_cmd[0] = JEDEC_WRSR3;
write_cmd[1] = value;
write_cmd_len = JEDEC_WRSR3_OUTSIZE;
break;
}
if ((feature_bits & FEATURE_WRSR_EXT3) == FEATURE_WRSR_EXT3) {
if (spi_prepare_wrsr_ext(write_cmd, &write_cmd_len, flash, reg, value))
return 1;
break;
}
msg_cerr("Cannot write SR3: unsupported by chip\n");
return 1;
case SECURITY:
/*
* Security register doesn't have a normal write operation. Instead,
* there are separate commands that set individual OTP bits.
*/
msg_cerr("Cannot write SECURITY: unsupported by design\n");
return 1;
case CONFIG:
/*
* This one is read via a separate command, but written as if it's SR2
* in FEATURE_WRSR_EXT2 case of WRSR command.
*/
if (feature_bits & FEATURE_CFGR) {
write_cmd[0] = JEDEC_WRSR;
if (spi_read_register(flash, STATUS1, &write_cmd[1])) {
msg_cerr("Writing CONFIG failed: failed to read SR1 for writeback.\n");
return 1;
}
write_cmd[2] = value;
write_cmd_len = 3;
break;
}
msg_cerr("Cannot write CONFIG: unsupported by chip\n");
return 1;
default:
msg_cerr("Cannot write register: unknown register\n");
return 1;
}
if (!spi_probe_opcode(flash, write_cmd[0])) {
msg_pdbg("%s: write to register %d not supported by programmer, ignoring.\n", __func__, reg);
return SPI_INVALID_OPCODE;
}
uint8_t enable_cmd;
if (feature_bits & FEATURE_WRSR_WREN) {
enable_cmd = JEDEC_WREN;
} else if (feature_bits & FEATURE_WRSR_EWSR) {
enable_cmd = JEDEC_EWSR;
} else {
msg_cdbg("Missing status register write definition, assuming "
"EWSR is needed\n");
enable_cmd = JEDEC_EWSR;
}
struct spi_command cmds[] = {
{
.writecnt = JEDEC_WREN_OUTSIZE,
.writearr = &enable_cmd,
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = write_cmd_len,
.writearr = write_cmd,
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
int result = spi_send_multicommand(flash, cmds);
if (result) {
msg_cerr("%s failed during command execution\n", __func__);
return result;
}
/*
* WRSR performs a self-timed erase before the changes take effect.
* This may take 50-85 ms in most cases, and some chips apparently
* allow running RDSR only once. Therefore pick an initial delay of
* 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
*
* Newer chips with multiple status registers (SR2 etc.) are unlikely
* to have problems with multiple RDSR commands, so only wait for the
* initial 100 ms if the register we wrote to was SR1.
*/
int delay_ms = 5000;
if (reg == STATUS1) {
programmer_delay(flash, 100 * 1000);
delay_ms -= 100;
}
for (; delay_ms > 0; delay_ms -= 10) {
uint8_t status;
result = spi_read_register(flash, STATUS1, &status);
if (result)
return result;
if ((status & SPI_SR_WIP) == 0)
return 0;
programmer_delay(flash, 10 * 1000);
}
msg_cerr("Error: WIP bit after WRSR never cleared\n");
return TIMEOUT_ERROR;
}
int spi_read_register(const struct flashctx *flash, enum flash_reg reg, uint8_t *value)
{
int feature_bits = flash->chip->feature_bits;
uint8_t read_cmd;
switch (reg) {
case STATUS1:
read_cmd = JEDEC_RDSR;
break;
case STATUS2:
if (feature_bits & (FEATURE_WRSR_EXT2 | FEATURE_WRSR2)) {
read_cmd = JEDEC_RDSR2;
break;
}
msg_cerr("Cannot read SR2: unsupported by chip\n");
return 1;
case STATUS3:
if ((feature_bits & FEATURE_WRSR_EXT3) == FEATURE_WRSR_EXT3
|| (feature_bits & FEATURE_WRSR3)) {
read_cmd = JEDEC_RDSR3;
break;
}
msg_cerr("Cannot read SR3: unsupported by chip\n");
return 1;
case SECURITY:
if (feature_bits & FEATURE_SCUR) {
read_cmd = JEDEC_RDSCUR;
break;
}
msg_cerr("Cannot read SECURITY: unsupported by chip\n");
return 1;
case CONFIG:
if (feature_bits & FEATURE_CFGR) {
read_cmd = JEDEC_RDCR;
break;
}
msg_cerr("Cannot read CONFIG: unsupported by chip\n");
return 1;
default:
msg_cerr("Cannot read register: unknown register\n");
return 1;
}
if (!spi_probe_opcode(flash, read_cmd)) {
msg_pdbg("%s: read from register %d not supported by programmer.\n", __func__, reg);
return SPI_INVALID_OPCODE;
}
/* FIXME: No workarounds for driver/hardware bugs in generic code. */
/* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
uint8_t readarr[2];
int ret = spi_send_command(flash, sizeof(read_cmd), sizeof(readarr), &read_cmd, readarr);
if (ret) {
msg_cerr("Register read failed!\n");
return ret;
}
*value = readarr[0];
return 0;
}
static int spi_restore_status(struct flashctx *flash, void *data)
{
uint8_t status = *(uint8_t *)data;
free(data);
msg_cdbg("restoring chip status (0x%02x)\n", status);
return spi_write_register(flash, STATUS1, status);
}
/* A generic block protection disable.
* Tests if a protection is enabled with the block protection mask (bp_mask) and returns success otherwise.
* Tests if the register bits are locked with the lock_mask (lock_mask).
* Tests if a hardware protection is active (i.e. low pin/high bit value) with the write protection mask
* (wp_mask) and bails out in that case.
* If there are register lock bits set we try to disable them by unsetting those bits of the previous register
* contents that are set in the lock_mask. We then check if removing the lock bits has worked and continue as if
* they never had been engaged:
* If the lock bits are out of the way try to disable engaged protections.
* To support uncommon global unprotects (e.g. on most AT2[56]xx1(A)) unprotect_mask can be used to force
* bits to 0 additionally to those set in bp_mask and lock_mask. Only bits set in unprotect_mask are potentially
* preserved when doing the final unprotect.
*
* To sum up:
* bp_mask: set those bits that correspond to the bits in the status register that indicate an active protection
* (which should be unset after this function returns).
* lock_mask: set the bits that correspond to the bits that lock changing the bits above.
* wp_mask: set the bits that correspond to bits indicating non-software revocable protections.
* unprotect_mask: set the bits that should be preserved if possible when unprotecting.
*/
static int spi_disable_blockprotect_generic(struct flashctx *flash, uint8_t bp_mask, uint8_t lock_mask, uint8_t wp_mask, uint8_t unprotect_mask)
{
uint8_t status;
int result;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
if ((status & bp_mask) == 0) {
msg_cdbg2("Block protection is disabled.\n");
return 0;
}
/* Restore status register content upon exit in finalize_flash_access(). */
uint8_t *data = calloc(sizeof(uint8_t), 1);
if (!data) {
msg_cerr("Out of memory!\n");
return 1;
}
*data = status;
register_chip_restore(spi_restore_status, flash, data);
msg_cdbg("Some block protection in effect, disabling... ");
if ((status & lock_mask) != 0) {
msg_cdbg("\n\tNeed to disable the register lock first... ");
if (wp_mask != 0 && (status & wp_mask) == 0) {
msg_cerr("Hardware protection is active, disabling write protection is impossible.\n");
return 1;
}
/* All bits except the register lock bit (often called SPRL, SRWD, WPEN) are readonly. */
result = spi_write_register(flash, STATUS1, status & ~lock_mask);
if (result) {
msg_cerr("Could not write status register 1.\n");
return result;
}
ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
if ((status & lock_mask) != 0) {
msg_cerr("Unsetting lock bit(s) failed.\n");
return 1;
}
msg_cdbg("done.\n");
}
/* Global unprotect. Make sure to mask the register lock bit as well. */
result = spi_write_register(flash, STATUS1, status & ~(bp_mask | lock_mask) & unprotect_mask);
if (result) {
msg_cerr("Could not write status register 1.\n");
return result;
}
ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
if ((status & bp_mask) != 0) {
msg_cerr("Block protection could not be disabled!\n");
if (flash->chip->printlock)
flash->chip->printlock(flash);
return 1;
}
msg_cdbg("disabled.\n");
return 0;
}
/* A common block protection disable that tries to unset the status register bits masked by 0x3C. */
static int spi_disable_blockprotect(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x3C, 0, 0, 0xFF);
}
static int spi_disable_blockprotect_sst26_global_unprotect(struct flashctx *flash)
{
int result = spi_write_enable(flash);
if (result)
return result;
static const unsigned char cmd[] = { 0x98 }; /* ULBPR */
result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
if (result)
msg_cerr("ULBPR failed\n");
return result;
}
/* A common block protection disable that tries to unset the status register bits masked by 0x0C (BP0-1) and
* protected/locked by bit #7. Useful when bits 4-5 may be non-0). */
static int spi_disable_blockprotect_bp1_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x0C, 1 << 7, 0, 0xFF);
}
/* A common block protection disable that tries to unset the status register bits masked by 0x1C (BP0-2) and
* protected/locked by bit #7. Useful when bit #5 is neither a protection bit nor reserved (and hence possibly
* non-0). */
static int spi_disable_blockprotect_bp2_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x1C, 1 << 7, 0, 0xFF);
}
/* A common block protection disable that tries to unset the status register bits masked by 0x3C (BP0-3) and
* protected/locked by bit #7. */
static int spi_disable_blockprotect_bp3_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x3C, 1 << 7, 0, 0xFF);
}
/* A common block protection disable that tries to unset the status register bits masked by 0x7C (BP0-4) and
* protected/locked by bit #7. */
static int spi_disable_blockprotect_bp4_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x7C, 1 << 7, 0, 0xFF);
}
static void spi_prettyprint_status_register_hex(uint8_t status)
{
msg_cdbg("Chip status register is 0x%02x.\n", status);
}
/* Common highest bit: Status Register Write Disable (SRWD) or Status Register Protect (SRP). */
static void spi_prettyprint_status_register_srwd(uint8_t status)
{
msg_cdbg("Chip status register: Status Register Write Disable (SRWD, SRP, ...) is %sset\n",
(status & (1 << 7)) ? "" : "not ");
}
/* Common highest bit: Block Protect Write Disable (BPL). */
static void spi_prettyprint_status_register_bpl(uint8_t status)
{
msg_cdbg("Chip status register: Block Protect Write Disable (BPL) is %sset\n",
(status & (1 << 7)) ? "" : "not ");
}
/* Common lowest 2 bits: WEL and WIP. */
static void spi_prettyprint_status_register_welwip(uint8_t status)
{
msg_cdbg("Chip status register: Write Enable Latch (WEL) is %sset\n",
(status & (1 << 1)) ? "" : "not ");
msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is %sset\n",
(status & (1 << 0)) ? "" : "not ");
}
/* Common block protection (BP) bits. */
static void spi_prettyprint_status_register_bp(uint8_t status, int bp)
{
switch (bp) {
case 4:
msg_cdbg("Chip status register: Block Protect 4 (BP4) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
/* Fall through. */
case 3:
msg_cdbg("Chip status register: Block Protect 3 (BP3) is %sset\n",
(status & (1 << 5)) ? "" : "not ");
/* Fall through. */
case 2:
msg_cdbg("Chip status register: Block Protect 2 (BP2) is %sset\n",
(status & (1 << 4)) ? "" : "not ");
/* Fall through. */
case 1:
msg_cdbg("Chip status register: Block Protect 1 (BP1) is %sset\n",
(status & (1 << 3)) ? "" : "not ");
/* Fall through. */
case 0:
msg_cdbg("Chip status register: Block Protect 0 (BP0) is %sset\n",
(status & (1 << 2)) ? "" : "not ");
}
}
/* Unnamed bits. */
void spi_prettyprint_status_register_bit(uint8_t status, int bit)
{
msg_cdbg("Chip status register: Bit %i is %sset\n", bit, (status & (1 << bit)) ? "" : "not ");
}
int spi_prettyprint_status_register_plain(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
return 0;
}
/* Print the plain hex value and the welwip bits only. */
int spi_prettyprint_status_register_default_welwip(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Works for many chips of the
* AMIC A25L series
* and MX MX25L512
*/
int spi_prettyprint_status_register_bp1_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bit(status, 4);
spi_prettyprint_status_register_bp(status, 1);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Works for many chips of the
* AMIC A25L series
* PMC Pm25LD series
*/
int spi_prettyprint_status_register_bp2_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Works for many chips of the
* ST M25P series
* MX MX25L series
*/
int spi_prettyprint_status_register_bp3_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bp(status, 3);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_bp4_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
spi_prettyprint_status_register_bp(status, 4);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_bp2_bpl(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_bpl(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_bp2_tb_bpl(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_bpl(status);
spi_prettyprint_status_register_bit(status, 6);
msg_cdbg("Chip status register: Top/Bottom (TB) is %s\n", (status & (1 << 5)) ? "bottom" : "top");
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* === Amic ===
* FIXME: spi_disable_blockprotect is incorrect but works fine for chips using
* spi_prettyprint_status_register_bp1_srwd or
* spi_prettyprint_status_register_bp2_srwd.
* FIXME: spi_disable_blockprotect is incorrect and will fail for chips using
* spi_prettyprint_status_register_amic_a25l032 if those have locks controlled
* by the second status register.
*/
int spi_prettyprint_status_register_amic_a25l032(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
msg_cdbg("Chip status register: Sector Protect Size (SEC) is %i KB\n", (status & (1 << 6)) ? 4 : 64);
msg_cdbg("Chip status register: Top/Bottom (TB) is %s\n", (status & (1 << 5)) ? "bottom" : "top");
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
msg_cdbg("Chip status register 2 is NOT decoded!\n");
return 0;
}
/* === Atmel === */
static void spi_prettyprint_status_register_atmel_at25_wpen(uint8_t status)
{
msg_cdbg("Chip status register: Write Protect Enable (WPEN) is %sset\n",
(status & (1 << 7)) ? "" : "not ");
}
static void spi_prettyprint_status_register_atmel_at25_srpl(uint8_t status)
{
msg_cdbg("Chip status register: Sector Protection Register Lock (SRPL) is %sset\n",
(status & (1 << 7)) ? "" : "not ");
}
static void spi_prettyprint_status_register_atmel_at25_epewpp(uint8_t status)
{
msg_cdbg("Chip status register: Erase/Program Error (EPE) is %sset\n",
(status & (1 << 5)) ? "" : "not ");
msg_cdbg("Chip status register: WP# pin (WPP) is %sasserted\n",
(status & (1 << 4)) ? "not " : "");
}
static void spi_prettyprint_status_register_atmel_at25_swp(uint8_t status)
{
msg_cdbg("Chip status register: Software Protection Status (SWP): ");
switch (status & (3 << 2)) {
case 0x0 << 2:
msg_cdbg("no sectors are protected\n");
break;
case 0x1 << 2:
msg_cdbg("some sectors are protected\n");
/* FIXME: Read individual Sector Protection Registers. */
break;
case 0x3 << 2:
msg_cdbg("all sectors are protected\n");
break;
default:
msg_cdbg("reserved for future use\n");
break;
}
}
int spi_prettyprint_status_register_at25df(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_srpl(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_atmel_at25_epewpp(status);
spi_prettyprint_status_register_atmel_at25_swp(status);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25df_sec(struct flashctx *flash)
{
/* FIXME: We should check the security lockdown. */
msg_cdbg("Ignoring security lockdown (if present)\n");
msg_cdbg("Ignoring status register byte 2\n");
return spi_prettyprint_status_register_at25df(flash);
}
/* used for AT25F512, AT25F1024(A), AT25F2048 */
int spi_prettyprint_status_register_at25f(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bit(status, 4);
spi_prettyprint_status_register_bp(status, 1);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25f512a(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bit(status, 4);
spi_prettyprint_status_register_bit(status, 3);
spi_prettyprint_status_register_bp(status, 0);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25f512b(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_srpl(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_atmel_at25_epewpp(status);
spi_prettyprint_status_register_bit(status, 3);
spi_prettyprint_status_register_bp(status, 0);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25f4096(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
spi_prettyprint_status_register_bit(status, 6);
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25fs010(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
msg_cdbg("Chip status register: Bit 6 / Block Protect 4 (BP4) is "
"%sset\n", (status & (1 << 6)) ? "" : "not ");
msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) is "
"%sset\n", (status & (1 << 5)) ? "" : "not ");
spi_prettyprint_status_register_bit(status, 4);
msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) is "
"%sset\n", (status & (1 << 3)) ? "" : "not ");
msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) is "
"%sset\n", (status & (1 << 2)) ? "" : "not ");
/* FIXME: Pretty-print detailed sector protection status. */
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at25fs040(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_wpen(status);
spi_prettyprint_status_register_bp(status, 4);
/* FIXME: Pretty-print detailed sector protection status. */
spi_prettyprint_status_register_welwip(status);
return 0;
}
int spi_prettyprint_status_register_at26df081a(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_atmel_at25_srpl(status);
msg_cdbg("Chip status register: Sequential Program Mode Status (SPM) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
spi_prettyprint_status_register_atmel_at25_epewpp(status);
spi_prettyprint_status_register_atmel_at25_swp(status);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Some Atmel DataFlash chips support per sector protection bits and the write protection bits in the status
* register do indicate if none, some or all sectors are protected. It is possible to globally (un)lock all
* sectors at once by writing 0 not only the protection bits (2 and 3) but also completely unrelated bits (4 and
* 5) which normally are not touched.
* Affected are all known Atmel chips matched by AT2[56]D[FLQ]..1A? but the AT26DF041. */
static int spi_disable_blockprotect_at2x_global_unprotect(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x0C, 1 << 7, 1 << 4, 0x00);
}
static int spi_disable_blockprotect_at2x_global_unprotect_sec(struct flashctx *flash)
{
/* FIXME: We should check the security lockdown. */
msg_cinfo("Ignoring security lockdown (if present)\n");
return spi_disable_blockprotect_at2x_global_unprotect(flash);
}
static int spi_disable_blockprotect_at25f(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x0C, 1 << 7, 0, 0xFF);
}
static int spi_disable_blockprotect_at25f512a(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x04, 1 << 7, 0, 0xFF);
}
static int spi_disable_blockprotect_at25f512b(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x04, 1 << 7, 1 << 4, 0xFF);
}
static int spi_disable_blockprotect_at25fs010(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x6C, 1 << 7, 0, 0xFF);
}
static int spi_disable_blockprotect_at25fs040(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x7C, 1 << 7, 0, 0xFF);
}
/* === Eon === */
int spi_prettyprint_status_register_en25s_wp(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
msg_cdbg("Chip status register: WP# disable (WPDIS) is %sabled\n", (status & (1 << 6)) ? "en " : "dis");
spi_prettyprint_status_register_bp(status, 3);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* === Intel/Numonyx/Micron - Spansion === */
static int spi_disable_blockprotect_n25q(struct flashctx *flash)
{
return spi_disable_blockprotect_generic(flash, 0x5C, 1 << 7, 0, 0xFF);
}
int spi_prettyprint_status_register_n25q(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
if (flash->chip->total_size <= 32 / 8 * 1024) /* N25Q16 and N25Q32: reserved */
spi_prettyprint_status_register_bit(status, 6);
else
msg_cdbg("Chip status register: Block Protect 3 (BP3) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
msg_cdbg("Chip status register: Top/Bottom (TB) is %s\n", (status & (1 << 5)) ? "bottom" : "top");
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* Used by Intel/Numonyx S33 and Spansion S25FL-S chips */
/* TODO: Clear P_FAIL and E_FAIL with Clear SR Fail Flags Command (30h) here? */
static int spi_disable_blockprotect_bp2_ep_srwd(struct flashctx *flash)
{
return spi_disable_blockprotect_bp2_srwd(flash);
}
/* special unit-test hook */
blockprotect_func_t *g_test_unlock_injector;
blockprotect_func_t *lookup_blockprotect_func_ptr(const struct flashchip *const chip)
{
switch (chip->unlock) {
case SPI_DISABLE_BLOCKPROTECT: return spi_disable_blockprotect;
case SPI_DISABLE_BLOCKPROTECT_BP2_EP_SRWD: return spi_disable_blockprotect_bp2_ep_srwd;
case SPI_DISABLE_BLOCKPROTECT_BP1_SRWD: return spi_disable_blockprotect_bp1_srwd;
case SPI_DISABLE_BLOCKPROTECT_BP2_SRWD: return spi_disable_blockprotect_bp2_srwd;
case SPI_DISABLE_BLOCKPROTECT_BP3_SRWD: return spi_disable_blockprotect_bp3_srwd;
case SPI_DISABLE_BLOCKPROTECT_BP4_SRWD: return spi_disable_blockprotect_bp4_srwd;
case SPI_DISABLE_BLOCKPROTECT_AT45DB: return spi_disable_blockprotect_at45db; /* at45db.c */
case SPI_DISABLE_BLOCKPROTECT_AT25F: return spi_disable_blockprotect_at25f;
case SPI_DISABLE_BLOCKPROTECT_AT25FS010: return spi_disable_blockprotect_at25fs010;
case SPI_DISABLE_BLOCKPROTECT_AT25FS040: return spi_disable_blockprotect_at25fs040;
case SPI_DISABLE_BLOCKPROTECT_AT25F512A: return spi_disable_blockprotect_at25f512a;
case SPI_DISABLE_BLOCKPROTECT_AT25F512B: return spi_disable_blockprotect_at25f512b;
case SPI_DISABLE_BLOCKPROTECT_AT2X_GLOBAL_UNPROTECT: return spi_disable_blockprotect_at2x_global_unprotect;
case SPI_DISABLE_BLOCKPROTECT_AT2X_GLOBAL_UNPROTECT_SEC: return spi_disable_blockprotect_at2x_global_unprotect_sec;
case SPI_DISABLE_BLOCKPROTECT_SST26_GLOBAL_UNPROTECT: return spi_disable_blockprotect_sst26_global_unprotect;
case SPI_DISABLE_BLOCKPROTECT_N25Q: return spi_disable_blockprotect_n25q;
/* fallthough to lookup_jedec_blockprotect_func_ptr() */
case UNLOCK_REGSPACE2_BLOCK_ERASER_0:
case UNLOCK_REGSPACE2_BLOCK_ERASER_1:
case UNLOCK_REGSPACE2_UNIFORM_32K:
case UNLOCK_REGSPACE2_UNIFORM_64K:
return lookup_jedec_blockprotect_func_ptr(chip);
/* fallthough to lookup_82802ab_blockprotect_func_ptr() */
case UNLOCK_28F004S5:
case UNLOCK_LH28F008BJT:
return lookup_82802ab_blockprotect_func_ptr(chip);
case UNLOCK_SST_FWHUB: return unlock_sst_fwhub; /* sst_fwhub.c */
case UNPROTECT_28SF040: return unprotect_28sf040; /* sst28sf040.c */
case TEST_UNLOCK_INJECTOR: return g_test_unlock_injector;
/* default: non-total function, 0 indicates no unlock function set.
* We explicitly do not want a default catch-all case in the switch
* to ensure unhandled enum's are compiler warnings.
*/
case NO_BLOCKPROTECT_FUNC: return NULL;
};
return NULL;
}
/* Used by Intel/Numonyx S33 and Spansion S25FL-S chips */
int spi_prettyprint_status_register_bp2_ep_srwd(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_srwd(status);
msg_cdbg("Chip status register: Program Fail Flag (P_FAIL) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
msg_cdbg("Chip status register: Erase Fail Flag (E_FAIL) is %sset\n",
(status & (1 << 5)) ? "" : "not ");
spi_prettyprint_status_register_bp(status, 2);
spi_prettyprint_status_register_welwip(status);
return 0;
}
/* === SST === */
static void spi_prettyprint_status_register_sst25_common(uint8_t status)
{
spi_prettyprint_status_register_hex(status);
spi_prettyprint_status_register_bpl(status);
msg_cdbg("Chip status register: Auto Address Increment Programming (AAI) is %sset\n",
(status & (1 << 6)) ? "" : "not ");
spi_prettyprint_status_register_bp(status, 3);
spi_prettyprint_status_register_welwip(status);
}
int spi_prettyprint_status_register_sst25(struct flashctx *flash)
{
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_sst25_common(status);
return 0;
}
int spi_prettyprint_status_register_sst25vf016(struct flashctx *flash)
{
static const char *const bpt[] = {
"none",
"1F0000H-1FFFFFH",
"1E0000H-1FFFFFH",
"1C0000H-1FFFFFH",
"180000H-1FFFFFH",
"100000H-1FFFFFH",
"all", "all"
};
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_sst25_common(status);
msg_cdbg("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]);
return 0;
}
int spi_prettyprint_status_register_sst25vf040b(struct flashctx *flash)
{
static const char *const bpt[] = {
"none",
"0x70000-0x7ffff",
"0x60000-0x7ffff",
"0x40000-0x7ffff",
"all blocks", "all blocks", "all blocks", "all blocks"
};
uint8_t status;
int ret = spi_read_register(flash, STATUS1, &status);
if (ret)
return ret;
spi_prettyprint_status_register_sst25_common(status);
msg_cdbg("Resulting block protection : %s\n", bpt[(status & 0x1c) >> 2]);
return 0;
}