1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-27 07:02:34 +02:00
flashrom/hwaccess.c
Carl-Daniel Hailfinger ccd71c2122 Fix parallel-style programmer access from ITE IT87/Winbond W83627 SPI
The ITE IT87 SPI driver uses a trick to speed up reading and writing:
If a flash chip is 512 kByte or less, the flash chip can be completely
mapped in memory and both read and write accesses are faster that way.
The current IT87 SPI code did use the parallel programmer interface for
memory mapped reads and writes, but that's the wrong abstraction. It has
been fixed to use mmio_read*/mmio_write* for that purpose.

The Winbond W83627 SPI driver uses the same trick in its read path for
all supported chip sizes. Fix it the same way.

Switch internal_chip_readn to use mmio_readn as proper abstraction.

Kudos to Michael Karcher for spotting the bugs.

Tested-by: Johan Svensson <flashrom.js@crypt.se>

Corresponding to flashrom svn r1511.

Reported-by: Johan Svensson <flashrom.js@crypt.se>
Signed-off-by: Carl-Daniel Hailfinger <c-d.hailfinger.devel.2006@gmx.net>
Acked-by: Michael Karcher <flashrom@mkarcher.dialup.fu-berlin.de>
2012-03-01 22:38:27 +00:00

313 lines
6.6 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009,2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#if !defined (__DJGPP__) && !defined(__LIBPAYLOAD__)
#include <unistd.h>
#include <fcntl.h>
#endif
#if !defined (__DJGPP__)
#include <errno.h>
#endif
#include "flash.h"
#if defined(__i386__) || defined(__x86_64__)
/* sync primitive is not needed because x86 uses uncached accesses
* which have a strongly ordered memory model.
*/
static inline void sync_primitive(void)
{
}
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
int io_fd;
#endif
void get_io_perms(void)
{
#if defined(__DJGPP__) || defined(__LIBPAYLOAD__)
/* We have full permissions by default. */
return;
#else
#if defined (__sun) && (defined(__i386) || defined(__amd64))
if (sysi86(SI86V86, V86SC_IOPL, PS_IOPL) != 0) {
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined (__DragonFly__)
if ((io_fd = open("/dev/io", O_RDWR)) < 0) {
#else
if (iopl(3) != 0) {
#endif
msg_perr("ERROR: Could not get I/O privileges (%s).\n"
"You need to be root.\n", strerror(errno));
#if defined (__OpenBSD__)
msg_perr("Please set securelevel=-1 in /etc/rc.securelevel "
"and reboot, or reboot into \n");
msg_perr("single user mode.\n");
#endif
exit(1);
}
#endif
}
void release_io_perms(void)
{
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
close(io_fd);
#endif
}
#elif defined(__powerpc__) || defined(__powerpc64__) || defined(__ppc__) || defined(__ppc64__)
static inline void sync_primitive(void)
{
/* Prevent reordering and/or merging of reads/writes to hardware.
* Such reordering and/or merging would break device accesses which
* depend on the exact access order.
*/
asm("eieio" : : : "memory");
}
/* PCI port I/O is not yet implemented on PowerPC. */
void get_io_perms(void)
{
}
/* PCI port I/O is not yet implemented on PowerPC. */
void release_io_perms(void)
{
}
#elif defined (__mips) || defined (__mips__) || defined (_mips) || defined (mips)
/* sync primitive is not needed because /dev/mem on MIPS uses uncached accesses
* in mode 2 which has a strongly ordered memory model.
*/
static inline void sync_primitive(void)
{
}
/* PCI port I/O is not yet implemented on MIPS. */
void get_io_perms(void)
{
}
/* PCI port I/O is not yet implemented on MIPS. */
void release_io_perms(void)
{
}
#elif defined (__arm__)
static inline void sync_primitive(void)
{
}
void get_io_perms(void)
{
}
void release_io_perms(void)
{
}
#else
#error Unknown architecture
#endif
void mmio_writeb(uint8_t val, void *addr)
{
*(volatile uint8_t *) addr = val;
sync_primitive();
}
void mmio_writew(uint16_t val, void *addr)
{
*(volatile uint16_t *) addr = val;
sync_primitive();
}
void mmio_writel(uint32_t val, void *addr)
{
*(volatile uint32_t *) addr = val;
sync_primitive();
}
uint8_t mmio_readb(void *addr)
{
return *(volatile uint8_t *) addr;
}
uint16_t mmio_readw(void *addr)
{
return *(volatile uint16_t *) addr;
}
uint32_t mmio_readl(void *addr)
{
return *(volatile uint32_t *) addr;
}
void mmio_readn(void *addr, uint8_t *buf, size_t len)
{
memcpy(buf, addr, len);
return;
}
void mmio_le_writeb(uint8_t val, void *addr)
{
mmio_writeb(cpu_to_le8(val), addr);
}
void mmio_le_writew(uint16_t val, void *addr)
{
mmio_writew(cpu_to_le16(val), addr);
}
void mmio_le_writel(uint32_t val, void *addr)
{
mmio_writel(cpu_to_le32(val), addr);
}
uint8_t mmio_le_readb(void *addr)
{
return le_to_cpu8(mmio_readb(addr));
}
uint16_t mmio_le_readw(void *addr)
{
return le_to_cpu16(mmio_readw(addr));
}
uint32_t mmio_le_readl(void *addr)
{
return le_to_cpu32(mmio_readl(addr));
}
enum mmio_write_type {
mmio_write_type_b,
mmio_write_type_w,
mmio_write_type_l,
};
struct undo_mmio_write_data {
void *addr;
int reg;
enum mmio_write_type type;
union {
uint8_t bdata;
uint16_t wdata;
uint32_t ldata;
};
};
int undo_mmio_write(void *p)
{
struct undo_mmio_write_data *data = p;
msg_pdbg("Restoring MMIO space at %p\n", data->addr);
switch (data->type) {
case mmio_write_type_b:
mmio_writeb(data->bdata, data->addr);
break;
case mmio_write_type_w:
mmio_writew(data->wdata, data->addr);
break;
case mmio_write_type_l:
mmio_writel(data->ldata, data->addr);
break;
}
/* p was allocated in register_undo_mmio_write. */
free(p);
return 0;
}
#define register_undo_mmio_write(a, c) \
{ \
struct undo_mmio_write_data *undo_mmio_write_data; \
undo_mmio_write_data = malloc(sizeof(struct undo_mmio_write_data)); \
if (!undo_mmio_write_data) { \
msg_gerr("Out of memory!\n"); \
exit(1); \
} \
undo_mmio_write_data->addr = a; \
undo_mmio_write_data->type = mmio_write_type_##c; \
undo_mmio_write_data->c##data = mmio_read##c(a); \
register_shutdown(undo_mmio_write, undo_mmio_write_data); \
}
#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b)
#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w)
#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l)
void rmmio_writeb(uint8_t val, void *addr)
{
register_undo_mmio_writeb(addr);
mmio_writeb(val, addr);
}
void rmmio_writew(uint16_t val, void *addr)
{
register_undo_mmio_writew(addr);
mmio_writew(val, addr);
}
void rmmio_writel(uint32_t val, void *addr)
{
register_undo_mmio_writel(addr);
mmio_writel(val, addr);
}
void rmmio_le_writeb(uint8_t val, void *addr)
{
register_undo_mmio_writeb(addr);
mmio_le_writeb(val, addr);
}
void rmmio_le_writew(uint16_t val, void *addr)
{
register_undo_mmio_writew(addr);
mmio_le_writew(val, addr);
}
void rmmio_le_writel(uint32_t val, void *addr)
{
register_undo_mmio_writel(addr);
mmio_le_writel(val, addr);
}
void rmmio_valb(void *addr)
{
register_undo_mmio_writeb(addr);
}
void rmmio_valw(void *addr)
{
register_undo_mmio_writew(addr);
}
void rmmio_vall(void *addr)
{
register_undo_mmio_writel(addr);
}