1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-26 22:52:34 +02:00
flashrom/erasure_layout.c
persmule 348dbeb05f erasure_layout: Erase larger block only when all sub-block need erase
A larger (not the smallest) erase block used to get erased when half
of sub-blocks it contains need erase, which has at least 2 issues:

1. The rest half of sub-blocks that do not need erase are also erased,
   introducing some erase overheads.

2. More severely, since this logic only selects a block and delects
   its sub-blocks when half of sub-blocks need erase, but this logic
   does not deselect "nested sub-blocks (sub-blocks of sub-block)" not
   reach the limit under this block, the logic may cause duplicated
   erase. For example, if a erase block (often the largest one
   corresponding to the whole chip) has half of its sub-blocks and
   some incontiguous nested sub-blocks needing erase, these double
   sub-blocks will end up being erased twice, introducing even more
   erase overheads than whole-chip erase.

The older behavior of flashrom before adding erasure_layout.c, when no
communicational error occurs, will neither erase blocks that do not
need erase, nor cause duplicated erase. Higher efficiency should be
achieved without introducing extra erase overheads, by allowing
combining contiguous small erase blocks only when they can
coincidently form a larger erase block.

Change-Id: I9e10749186e395da67ec80e296119f33c3f83122
Signed-off-by: persmule <persmule@hardenedlinux.org>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/84614
Reviewed-by: Peter Marheine <pmarheine@chromium.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Anastasia Klimchuk <aklm@chromium.org>
2024-10-13 23:15:15 +00:00

409 lines
13 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2022 Aarya Chaumal
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <limits.h>
#include <stdbool.h>
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#include "flash.h"
#include "layout.h"
#include "erasure_layout.h"
static size_t calculate_block_count(const struct flashchip *chip, size_t eraser_idx)
{
size_t block_count = 0;
chipoff_t addr = 0;
for (size_t i = 0; addr < chip->total_size * 1024; i++) {
const struct eraseblock *block = &chip->block_erasers[eraser_idx].eraseblocks[i];
block_count += block->count;
addr += block->size * block->count;
}
return block_count;
}
static void init_eraseblock(struct erase_layout *layout, size_t idx, size_t block_num,
chipoff_t start_addr, chipoff_t end_addr, size_t *sub_block_index)
{
struct eraseblock_data *edata = &layout[idx].layout_list[block_num];
edata->start_addr = start_addr;
edata->end_addr = end_addr;
edata->selected = false;
edata->block_num = block_num;
if (!idx)
return;
edata->first_sub_block_index = *sub_block_index;
struct eraseblock_data *subedata = &layout[idx - 1].layout_list[*sub_block_index];
while (*sub_block_index < layout[idx-1].block_count &&
subedata->start_addr >= start_addr && subedata->end_addr <= end_addr) {
(*sub_block_index)++;
subedata++;
}
edata->last_sub_block_index = *sub_block_index - 1;
}
/*
* @brief Function to free the created erase_layout
*
* @param layout pointer to allocated layout
* @param erasefn_count number of erase functions for which the layout was created
*
*/
void free_erase_layout(struct erase_layout *layout, unsigned int erasefn_count)
{
if (!layout)
return;
for (size_t i = 0; i < erasefn_count; i++) {
free(layout[i].layout_list);
}
free(layout);
}
/*
* @brief Function to create an erase layout
*
* @param flashctx flash context
* @param e_layout address to the pointer to store the layout
* @return 0 on success,
* -1 if layout creation fails
*
* This function creates a layout of which erase functions erase which regions
* of the flash chip. This helps to optimally select the erase functions for
* erase/write operations.
*/
int create_erase_layout(struct flashctx *const flashctx, struct erase_layout **e_layout)
{
const struct flashchip *chip = flashctx->chip;
const size_t erasefn_count = count_usable_erasers(flashctx);
if (!erasefn_count) {
msg_gerr("No erase functions supported\n");
return 0;
}
struct erase_layout *layout = calloc(erasefn_count, sizeof(struct erase_layout));
if (!layout) {
msg_gerr("Out of memory!\n");
return -1;
}
size_t layout_idx = 0;
for (size_t eraser_idx = 0; eraser_idx < NUM_ERASEFUNCTIONS; eraser_idx++) {
if (check_block_eraser(flashctx, eraser_idx, 0))
continue;
layout[layout_idx].eraser = &chip->block_erasers[eraser_idx];
const size_t block_count = calculate_block_count(flashctx->chip, eraser_idx);
size_t sub_block_index = 0;
layout[layout_idx].block_count = block_count;
layout[layout_idx].layout_list = (struct eraseblock_data *)calloc(block_count,
sizeof(struct eraseblock_data));
if (!layout[layout_idx].layout_list) {
free_erase_layout(layout, layout_idx);
return -1;
}
size_t block_num = 0;
chipoff_t start_addr = 0;
for (int i = 0; block_num < block_count; i++) {
const struct eraseblock *block = &chip->block_erasers[eraser_idx].eraseblocks[i];
for (size_t num = 0; num < block->count; num++) {
chipoff_t end_addr = start_addr + block->size - 1;
init_eraseblock(layout, layout_idx, block_num,
start_addr, end_addr, &sub_block_index);
block_num += 1;
start_addr = end_addr + 1;
}
}
layout_idx++;
}
*e_layout = layout;
return layout_idx;
}
/*
* @brief Function to align start and address of the region boundaries
*
* @param layout erase layout
* @param flashctx flash context
* @param region_start pointer to start address of the region to align
* @param region_end pointer to end address of the region to align
*
* This function aligns start and end address of the region
* to some erase sector boundaries and modify the region start and end addresses
* to match nearest erase sector boundaries. This function will be used in the
* new algorithm for erase function selection.
*/
static void align_region(const struct erase_layout *layout, struct flashctx *const flashctx,
chipoff_t *region_start, chipoff_t *region_end)
{
chipoff_t start_diff = UINT_MAX, end_diff = UINT_MAX;
const size_t erasefn_count = count_usable_erasers(flashctx);
for (size_t i = 0; i < erasefn_count; i++) {
for (size_t j = 0; j < layout[i].block_count; j++) {
const struct eraseblock_data *ll = &layout[i].layout_list[j];
if (ll->start_addr <= *region_start)
start_diff = (*region_start - ll->start_addr) > start_diff ?
start_diff : (*region_start - ll->start_addr);
if (ll->end_addr >= *region_end)
end_diff = (ll->end_addr - *region_end) > end_diff ?
end_diff : (ll->end_addr - *region_end);
}
}
if (start_diff) {
msg_cinfo("Region [0x%08x - 0x%08x] is not sector aligned! "
"Extending start boundaries by 0x%08x bytes, from 0x%08x -> 0x%08x\n",
*region_start, *region_end,
start_diff, *region_start, *region_start - start_diff);
*region_start = *region_start - start_diff;
}
if (end_diff) {
msg_cinfo("Region [0x%08x - 0x%08x] is not sector aligned! "
"Extending end boundaries by 0x%08x bytes, from 0x%08x -> 0x%08x\n",
*region_start, *region_end,
end_diff, *region_end, *region_end + end_diff);
*region_end = *region_end + end_diff;
}
}
/*
* @brief Function to select the list of sectors that need erasing
*
* @param flashctx flash context
* @param layout erase layout
* @param findex index of the erase function
* @param block_num index of the block to erase according to the erase function index
* @param curcontents buffer containg the current contents of the flash
* @param newcontents buffer containg the new contents of the flash
* @param rstart start address of the region
* @rend rend end address of the region
*/
static void select_erase_functions(struct flashctx *flashctx, const struct erase_layout *layout,
size_t findex, size_t block_num, uint8_t *curcontents, uint8_t *newcontents,
chipoff_t rstart, chipoff_t rend)
{
struct eraseblock_data *ll = &layout[findex].layout_list[block_num];
if (!findex) {
if (ll->start_addr >= rstart && ll->end_addr <= rend) {
chipoff_t start_addr = ll->start_addr;
chipoff_t end_addr = ll->end_addr;
const chipsize_t erase_len = end_addr - start_addr + 1;
const uint8_t erased_value = ERASED_VALUE(flashctx);
ll->selected = need_erase(curcontents + start_addr, newcontents + start_addr, erase_len,
flashctx->chip->gran, erased_value);
}
} else {
int count = 0;
const int sub_block_start = ll->first_sub_block_index;
const int sub_block_end = ll->last_sub_block_index;
for (int j = sub_block_start; j <= sub_block_end; j++) {
select_erase_functions(flashctx, layout, findex - 1, j, curcontents, newcontents,
rstart, rend);
if (layout[findex - 1].layout_list[j].selected)
count++;
}
const int total_blocks = sub_block_end - sub_block_start + 1;
if (count == total_blocks) {
if (ll->start_addr >= rstart && ll->end_addr <= rend) {
for (int j = sub_block_start; j <= sub_block_end; j++)
layout[findex - 1].layout_list[j].selected = false;
ll->selected = true;
}
}
}
}
static int erase_write_helper(struct flashctx *const flashctx, chipoff_t region_start, chipoff_t region_end,
uint8_t *curcontents, uint8_t *newcontents,
struct erase_layout *erase_layout, bool *all_skipped)
{
const size_t erasefn_count = count_usable_erasers(flashctx);
// select erase functions
for (size_t i = 0; i < erase_layout[erasefn_count - 1].block_count; i++) {
if (erase_layout[erasefn_count - 1].layout_list[i].start_addr <= region_end &&
region_start <= erase_layout[erasefn_count - 1].layout_list[i].end_addr)
select_erase_functions(flashctx, erase_layout,
erasefn_count - 1, i,
curcontents, newcontents,
region_start, region_end);
}
// erase
for (size_t i = 0; i < erasefn_count; i++) {
for (size_t j = 0; j < erase_layout[i].block_count; j++) {
if (!erase_layout[i].layout_list[j].selected)
continue;
chipoff_t start_addr = erase_layout[i].layout_list[j].start_addr;
unsigned int block_len = erase_layout[i].layout_list[j].end_addr - start_addr + 1;
const uint8_t erased_value = ERASED_VALUE(flashctx);
// execute erase
erasefunc_t *erasefn = lookup_erase_func_ptr(erase_layout[i].eraser);
if (erasefn(flashctx, start_addr, block_len)) {
return -1;
}
if (check_erased_range(flashctx, start_addr, block_len)) {
return -1;
msg_cerr("ERASE FAILED!\n");
}
// adjust curcontents
memset(curcontents+start_addr, erased_value, block_len);
// after erase make it unselected again
erase_layout[i].layout_list[j].selected = false;
msg_cdbg("E(%"PRIx32":%"PRIx32")", start_addr, start_addr + block_len - 1);
*all_skipped = false;
}
}
// write
unsigned int start_here = 0, len_here = 0, erase_len = region_end - region_start + 1;
while ((len_here = get_next_write(curcontents + region_start + start_here,
newcontents + region_start + start_here,
erase_len - start_here, &start_here,
flashctx->chip->gran))) {
// execute write
int ret = write_flash(flashctx,
newcontents + region_start + start_here,
region_start + start_here, len_here);
if (ret) {
msg_cerr("Write failed at %#x, Abort.\n", region_start + start_here);
return -1;
}
// adjust curcontents
memcpy(curcontents + region_start + start_here,
newcontents + region_start + start_here, len_here);
msg_cdbg("W(%"PRIx32":%"PRIx32")", region_start + start_here, region_start + start_here + len_here - 1);
*all_skipped = false;
}
return 0;
}
/*
* @brief wrapper to use the erase algorithm
*
* @param flashctx flash context
* @param region_start start address of the region
* @param region_end end address of the region
* @param curcontents buffer containg the current contents of the flash
* @param newcontents buffer containg the new contents of the flash
* @param erase_layout erase layout
* @param all_skipped pointer to the flag to chec if any block was erased
*/
int erase_write(struct flashctx *const flashctx, chipoff_t region_start, chipoff_t region_end,
uint8_t *curcontents, uint8_t *newcontents,
struct erase_layout *erase_layout, bool *all_skipped)
{
int ret = 0;
chipoff_t old_start = region_start, old_end = region_end;
align_region(erase_layout, flashctx, &region_start, &region_end);
if (!flashctx->flags.skip_unwritable_regions) {
if (check_for_unwritable_regions(flashctx, region_start, region_end - region_start + 1))
return -1;
}
uint8_t *old_start_buf = NULL, *old_end_buf = NULL;
const size_t start_buf_len = old_start - region_start;
const size_t end_buf_len = region_end - old_end;
if (start_buf_len) {
old_start_buf = (uint8_t *)malloc(start_buf_len);
if (!old_start_buf) {
msg_cerr("Not enough memory!\n");
ret = -1;
goto _end;
}
read_flash(flashctx, curcontents + region_start, region_start, start_buf_len);
memcpy(old_start_buf, newcontents + region_start, start_buf_len);
memcpy(newcontents + region_start, curcontents + region_start, start_buf_len);
}
if (end_buf_len) {
chipoff_t end_offset = old_end + 1;
old_end_buf = (uint8_t *)malloc(end_buf_len);
if (!old_end_buf) {
msg_cerr("Not enough memory!\n");
ret = -1;
goto _end;
}
read_flash(flashctx, curcontents + end_offset, end_offset, end_buf_len);
memcpy(old_end_buf, newcontents + end_offset, end_buf_len);
memcpy(newcontents + end_offset, curcontents + end_offset, end_buf_len);
}
unsigned int len;
for (unsigned int addr = region_start; addr <= region_end; addr += len) {
struct flash_region region;
get_flash_region(flashctx, addr, &region);
len = min(region_end, region.end) - addr + 1;
if (region.write_prot) {
msg_gdbg("%s: cannot erase inside %s "
"region (%#08"PRIx32"..%#08"PRIx32"), skipping range (%#08x..%#08x).\n",
__func__, region.name,
region.start, region.end,
addr, addr + len - 1);
free(region.name);
continue;
}
msg_gdbg("%s: %s region (%#08"PRIx32"..%#08"PRIx32") is "
"writable, erasing range (%#08x..%#08x).\n",
__func__, region.name,
region.start, region.end,
addr, addr + len - 1);
free(region.name);
ret = erase_write_helper(flashctx, addr, addr + len - 1, curcontents, newcontents, erase_layout, all_skipped);
if (ret)
goto _end;
}
_end:
if (old_start_buf) {
memcpy(newcontents + region_start, old_start_buf, start_buf_len);
free(old_start_buf);
}
if (old_end_buf) {
memcpy(newcontents + old_end + 1, old_end_buf, end_buf_len);
free(old_end_buf);
}
msg_cinfo("Erase/write done from %"PRIx32" to %"PRIx32"\n", region_start, region_end);
return ret;
}