mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-26 22:52:34 +02:00

The patch adds command line option to handle the following situation: There is a region which is requested to be erased (or written, because the write operation uses erase too). Some of the areas inside this region don't need to be erased, because the bytes already have expected value. Such areas can be skipped. The logic selects eraseblocks that can cover the areas which need to be erased. Suppose there is a region which is partially covered by eraseblocks of size S (partially because remaining areas don't need to be erased). Now suppose we can cover the whole region with eraseblock of larger size, S+1, and erase it all at once. This will run faster: erase opcode will only be sent once instead of many smaller opcodes. However, this will run erase over some areas of the chip memory that didn't need to be erased. Which means, the chip, as a hardware, will wear faster. New command line option sets the maximum % memory that is allowed for redundant erase. Default is 0, S+1 size block only selected if all the area needs to be erased in full. 50 means that if more than a half of the area needs to be erased, a S+1 size block can be selected to cover all area with one block. The tradeoff is the speed of programming operation VS the longevity of the chip. Default is longevity. Change-Id: I154e8a713f626c37dbbe118db700055b96d24803 Co-developed-by: persmule <persmule@hardenedlinux.org Co-developed-by: Anastasia Klimchuk <aklm@flashrom.org> Signed-off-by: persmule <persmule@hardenedlinux.org> Signed-off-by: Anastasia Klimchuk <aklm@flashrom.org> Reviewed-on: https://review.coreboot.org/c/flashrom/+/84721 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Peter Marheine <pmarheine@chromium.org>
442 lines
14 KiB
C
442 lines
14 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2022 Aarya Chaumal
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include "flash.h"
|
|
#include "layout.h"
|
|
#include "erasure_layout.h"
|
|
|
|
static size_t calculate_block_count(const struct flashchip *chip, size_t eraser_idx)
|
|
{
|
|
size_t block_count = 0;
|
|
|
|
chipoff_t addr = 0;
|
|
for (size_t i = 0; addr < chip->total_size * 1024; i++) {
|
|
const struct eraseblock *block = &chip->block_erasers[eraser_idx].eraseblocks[i];
|
|
block_count += block->count;
|
|
addr += block->size * block->count;
|
|
}
|
|
|
|
return block_count;
|
|
}
|
|
|
|
static void init_eraseblock(struct erase_layout *layout, size_t idx, size_t block_num,
|
|
chipoff_t start_addr, chipoff_t end_addr, size_t *sub_block_index)
|
|
{
|
|
struct eraseblock_data *edata = &layout[idx].layout_list[block_num];
|
|
edata->start_addr = start_addr;
|
|
edata->end_addr = end_addr;
|
|
edata->selected = false;
|
|
edata->block_num = block_num;
|
|
|
|
if (!idx)
|
|
return;
|
|
|
|
edata->first_sub_block_index = *sub_block_index;
|
|
struct eraseblock_data *subedata = &layout[idx - 1].layout_list[*sub_block_index];
|
|
while (*sub_block_index < layout[idx-1].block_count &&
|
|
subedata->start_addr >= start_addr && subedata->end_addr <= end_addr) {
|
|
(*sub_block_index)++;
|
|
subedata++;
|
|
}
|
|
edata->last_sub_block_index = *sub_block_index - 1;
|
|
}
|
|
|
|
/*
|
|
* @brief Function to free the created erase_layout
|
|
*
|
|
* @param layout pointer to allocated layout
|
|
* @param erasefn_count number of erase functions for which the layout was created
|
|
*
|
|
*/
|
|
void free_erase_layout(struct erase_layout *layout, unsigned int erasefn_count)
|
|
{
|
|
if (!layout)
|
|
return;
|
|
for (size_t i = 0; i < erasefn_count; i++) {
|
|
free(layout[i].layout_list);
|
|
}
|
|
free(layout);
|
|
}
|
|
|
|
/*
|
|
* @brief Function to create an erase layout
|
|
*
|
|
* @param flashctx flash context
|
|
* @param e_layout address to the pointer to store the layout
|
|
* @return 0 on success,
|
|
* -1 if layout creation fails
|
|
*
|
|
* This function creates a layout of which erase functions erase which regions
|
|
* of the flash chip. This helps to optimally select the erase functions for
|
|
* erase/write operations.
|
|
*/
|
|
int create_erase_layout(struct flashctx *const flashctx, struct erase_layout **e_layout)
|
|
{
|
|
const struct flashchip *chip = flashctx->chip;
|
|
const size_t erasefn_count = count_usable_erasers(flashctx);
|
|
if (!erasefn_count) {
|
|
msg_gerr("No erase functions supported\n");
|
|
return 0;
|
|
}
|
|
|
|
struct erase_layout *layout = calloc(erasefn_count, sizeof(struct erase_layout));
|
|
if (!layout) {
|
|
msg_gerr("Out of memory!\n");
|
|
return -1;
|
|
}
|
|
|
|
size_t layout_idx = 0;
|
|
for (size_t eraser_idx = 0; eraser_idx < NUM_ERASEFUNCTIONS; eraser_idx++) {
|
|
if (check_block_eraser(flashctx, eraser_idx, 0))
|
|
continue;
|
|
|
|
layout[layout_idx].eraser = &chip->block_erasers[eraser_idx];
|
|
const size_t block_count = calculate_block_count(flashctx->chip, eraser_idx);
|
|
size_t sub_block_index = 0;
|
|
|
|
layout[layout_idx].block_count = block_count;
|
|
layout[layout_idx].layout_list = (struct eraseblock_data *)calloc(block_count,
|
|
sizeof(struct eraseblock_data));
|
|
|
|
if (!layout[layout_idx].layout_list) {
|
|
free_erase_layout(layout, layout_idx);
|
|
return -1;
|
|
}
|
|
|
|
size_t block_num = 0;
|
|
chipoff_t start_addr = 0;
|
|
|
|
for (int i = 0; block_num < block_count; i++) {
|
|
const struct eraseblock *block = &chip->block_erasers[eraser_idx].eraseblocks[i];
|
|
|
|
for (size_t num = 0; num < block->count; num++) {
|
|
chipoff_t end_addr = start_addr + block->size - 1;
|
|
init_eraseblock(layout, layout_idx, block_num,
|
|
start_addr, end_addr, &sub_block_index);
|
|
block_num += 1;
|
|
start_addr = end_addr + 1;
|
|
}
|
|
}
|
|
layout_idx++;
|
|
}
|
|
|
|
*e_layout = layout;
|
|
return layout_idx;
|
|
}
|
|
|
|
/*
|
|
* @brief Function to align start and address of the region boundaries
|
|
*
|
|
* @param layout erase layout
|
|
* @param flashctx flash context
|
|
* @param region_start pointer to start address of the region to align
|
|
* @param region_end pointer to end address of the region to align
|
|
*
|
|
* This function aligns start and end address of the region
|
|
* to some erase sector boundaries and modify the region start and end addresses
|
|
* to match nearest erase sector boundaries. This function will be used in the
|
|
* new algorithm for erase function selection.
|
|
*/
|
|
static void align_region(const struct erase_layout *layout, struct flashctx *const flashctx,
|
|
chipoff_t *region_start, chipoff_t *region_end)
|
|
{
|
|
chipoff_t start_diff = UINT_MAX, end_diff = UINT_MAX;
|
|
const size_t erasefn_count = count_usable_erasers(flashctx);
|
|
for (size_t i = 0; i < erasefn_count; i++) {
|
|
for (size_t j = 0; j < layout[i].block_count; j++) {
|
|
const struct eraseblock_data *ll = &layout[i].layout_list[j];
|
|
if (ll->start_addr <= *region_start)
|
|
start_diff = (*region_start - ll->start_addr) > start_diff ?
|
|
start_diff : (*region_start - ll->start_addr);
|
|
if (ll->end_addr >= *region_end)
|
|
end_diff = (ll->end_addr - *region_end) > end_diff ?
|
|
end_diff : (ll->end_addr - *region_end);
|
|
}
|
|
}
|
|
|
|
if (start_diff) {
|
|
msg_cinfo("Region [0x%08x - 0x%08x] is not sector aligned! "
|
|
"Extending start boundaries by 0x%08x bytes, from 0x%08x -> 0x%08x\n",
|
|
*region_start, *region_end,
|
|
start_diff, *region_start, *region_start - start_diff);
|
|
*region_start = *region_start - start_diff;
|
|
}
|
|
if (end_diff) {
|
|
msg_cinfo("Region [0x%08x - 0x%08x] is not sector aligned! "
|
|
"Extending end boundaries by 0x%08x bytes, from 0x%08x -> 0x%08x\n",
|
|
*region_start, *region_end,
|
|
end_diff, *region_end, *region_end + end_diff);
|
|
*region_end = *region_end + end_diff;
|
|
}
|
|
}
|
|
|
|
/* Deselect all the blocks from index_to_deselect and down to the smallest. */
|
|
static void deselect_erase_functions(const struct erase_layout *layout, size_t index_to_deselect,
|
|
int sub_block_start, const int sub_block_end)
|
|
{
|
|
for (int j = sub_block_start; j <= sub_block_end; j++)
|
|
layout[index_to_deselect].layout_list[j].selected = false;
|
|
|
|
int block_start_to_deselect =
|
|
layout[index_to_deselect].layout_list[sub_block_start].first_sub_block_index;
|
|
int block_end_to_deselect =
|
|
layout[index_to_deselect].layout_list[sub_block_end].last_sub_block_index;
|
|
|
|
if (index_to_deselect)
|
|
deselect_erase_functions(layout,
|
|
index_to_deselect - 1,
|
|
block_start_to_deselect,
|
|
block_end_to_deselect);
|
|
else
|
|
return; // index_to_deselect has already reached 0, the smallest size of block. we are done.
|
|
}
|
|
|
|
/*
|
|
* @brief Function to select the list of sectors that need erasing
|
|
*
|
|
* @param flashctx flash context
|
|
* @param layout erase layout
|
|
* @param findex index of the erase function
|
|
* @param block_num index of the block to erase according to the erase function index
|
|
* @param curcontents buffer containg the current contents of the flash
|
|
* @param newcontents buffer containg the new contents of the flash
|
|
* @param rstart start address of the region
|
|
* @rend rend end address of the region
|
|
*/
|
|
static void select_erase_functions(struct flashctx *flashctx, const struct erase_layout *layout,
|
|
size_t findex, size_t block_num, uint8_t *curcontents, uint8_t *newcontents,
|
|
chipoff_t rstart, chipoff_t rend)
|
|
{
|
|
struct eraseblock_data *ll = &layout[findex].layout_list[block_num];
|
|
if (!findex) {
|
|
if (ll->start_addr >= rstart && ll->end_addr <= rend) {
|
|
chipoff_t start_addr = ll->start_addr;
|
|
chipoff_t end_addr = ll->end_addr;
|
|
const chipsize_t erase_len = end_addr - start_addr + 1;
|
|
const uint8_t erased_value = ERASED_VALUE(flashctx);
|
|
ll->selected = need_erase(curcontents + start_addr, newcontents + start_addr, erase_len,
|
|
flashctx->chip->gran, erased_value);
|
|
}
|
|
} else {
|
|
int count = 0;
|
|
const int sub_block_start = ll->first_sub_block_index;
|
|
const int sub_block_end = ll->last_sub_block_index;
|
|
|
|
for (int j = sub_block_start; j <= sub_block_end; j++) {
|
|
select_erase_functions(flashctx, layout, findex - 1, j, curcontents, newcontents,
|
|
rstart, rend);
|
|
if (layout[findex - 1].layout_list[j].selected)
|
|
count++;
|
|
}
|
|
|
|
const int total_blocks = sub_block_end - sub_block_start + 1;
|
|
if (total_blocks - count <= total_blocks * flashctx->sacrifice_ratio / 100) {
|
|
/* Number of smaller blocks not needed to change is lower than the
|
|
* sacrifice ratio, so we can sacrifice them.
|
|
* We are selecting one large block to cover the area, so
|
|
* send opcode once instead of sending many smaller ones.
|
|
*/
|
|
if (ll->start_addr >= rstart && ll->end_addr <= rend) {
|
|
/* Deselect all smaller blocks covering the same region. */
|
|
deselect_erase_functions(layout,
|
|
findex - 1,
|
|
sub_block_start,
|
|
sub_block_end);
|
|
|
|
/* Select large block. */
|
|
ll->selected = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int erase_write_helper(struct flashctx *const flashctx, chipoff_t region_start, chipoff_t region_end,
|
|
uint8_t *curcontents, uint8_t *newcontents,
|
|
struct erase_layout *erase_layout, bool *all_skipped)
|
|
{
|
|
const size_t erasefn_count = count_usable_erasers(flashctx);
|
|
|
|
// select erase functions
|
|
for (size_t i = 0; i < erase_layout[erasefn_count - 1].block_count; i++) {
|
|
if (erase_layout[erasefn_count - 1].layout_list[i].start_addr <= region_end &&
|
|
region_start <= erase_layout[erasefn_count - 1].layout_list[i].end_addr)
|
|
select_erase_functions(flashctx, erase_layout,
|
|
erasefn_count - 1, i,
|
|
curcontents, newcontents,
|
|
region_start, region_end);
|
|
}
|
|
|
|
// erase
|
|
for (size_t i = 0; i < erasefn_count; i++) {
|
|
for (size_t j = 0; j < erase_layout[i].block_count; j++) {
|
|
if (!erase_layout[i].layout_list[j].selected)
|
|
continue;
|
|
|
|
chipoff_t start_addr = erase_layout[i].layout_list[j].start_addr;
|
|
unsigned int block_len = erase_layout[i].layout_list[j].end_addr - start_addr + 1;
|
|
const uint8_t erased_value = ERASED_VALUE(flashctx);
|
|
// execute erase
|
|
erasefunc_t *erasefn = lookup_erase_func_ptr(erase_layout[i].eraser);
|
|
|
|
|
|
if (erasefn(flashctx, start_addr, block_len)) {
|
|
return -1;
|
|
}
|
|
if (check_erased_range(flashctx, start_addr, block_len)) {
|
|
msg_cerr("ERASE FAILED!\n");
|
|
return -1;
|
|
}
|
|
|
|
update_progress(flashctx, FLASHROM_PROGRESS_ERASE, block_len);
|
|
|
|
// adjust curcontents
|
|
memset(curcontents+start_addr, erased_value, block_len);
|
|
// after erase make it unselected again
|
|
erase_layout[i].layout_list[j].selected = false;
|
|
msg_cdbg("E(%"PRIx32":%"PRIx32")", start_addr, start_addr + block_len - 1);
|
|
|
|
*all_skipped = false;
|
|
}
|
|
}
|
|
|
|
// write
|
|
unsigned int start_here = 0, len_here = 0, erase_len = region_end - region_start + 1;
|
|
while ((len_here = get_next_write(curcontents + region_start + start_here,
|
|
newcontents + region_start + start_here,
|
|
erase_len - start_here, &start_here,
|
|
flashctx->chip->gran))) {
|
|
// execute write
|
|
int ret = write_flash(flashctx,
|
|
newcontents + region_start + start_here,
|
|
region_start + start_here, len_here);
|
|
if (ret) {
|
|
msg_cerr("Write failed at %#x, Abort.\n", region_start + start_here);
|
|
return -1;
|
|
}
|
|
|
|
// adjust curcontents
|
|
memcpy(curcontents + region_start + start_here,
|
|
newcontents + region_start + start_here, len_here);
|
|
msg_cdbg("W(%"PRIx32":%"PRIx32")", region_start + start_here, region_start + start_here + len_here - 1);
|
|
|
|
*all_skipped = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* @brief wrapper to use the erase algorithm
|
|
*
|
|
* @param flashctx flash context
|
|
* @param region_start start address of the region
|
|
* @param region_end end address of the region
|
|
* @param curcontents buffer containg the current contents of the flash
|
|
* @param newcontents buffer containg the new contents of the flash
|
|
* @param erase_layout erase layout
|
|
* @param all_skipped pointer to the flag to chec if any block was erased
|
|
*/
|
|
int erase_write(struct flashctx *const flashctx, chipoff_t region_start, chipoff_t region_end,
|
|
uint8_t *curcontents, uint8_t *newcontents,
|
|
struct erase_layout *erase_layout, bool *all_skipped)
|
|
{
|
|
int ret = 0;
|
|
chipoff_t old_start = region_start, old_end = region_end;
|
|
align_region(erase_layout, flashctx, ®ion_start, ®ion_end);
|
|
|
|
if (!flashctx->flags.skip_unwritable_regions) {
|
|
if (check_for_unwritable_regions(flashctx, region_start, region_end - region_start + 1))
|
|
return -1;
|
|
}
|
|
|
|
uint8_t *old_start_buf = NULL, *old_end_buf = NULL;
|
|
const size_t start_buf_len = old_start - region_start;
|
|
const size_t end_buf_len = region_end - old_end;
|
|
|
|
if (start_buf_len) {
|
|
old_start_buf = (uint8_t *)malloc(start_buf_len);
|
|
if (!old_start_buf) {
|
|
msg_cerr("Not enough memory!\n");
|
|
ret = -1;
|
|
goto _end;
|
|
}
|
|
read_flash(flashctx, curcontents + region_start, region_start, start_buf_len);
|
|
memcpy(old_start_buf, newcontents + region_start, start_buf_len);
|
|
memcpy(newcontents + region_start, curcontents + region_start, start_buf_len);
|
|
}
|
|
if (end_buf_len) {
|
|
chipoff_t end_offset = old_end + 1;
|
|
old_end_buf = (uint8_t *)malloc(end_buf_len);
|
|
if (!old_end_buf) {
|
|
msg_cerr("Not enough memory!\n");
|
|
ret = -1;
|
|
goto _end;
|
|
}
|
|
read_flash(flashctx, curcontents + end_offset, end_offset, end_buf_len);
|
|
memcpy(old_end_buf, newcontents + end_offset, end_buf_len);
|
|
memcpy(newcontents + end_offset, curcontents + end_offset, end_buf_len);
|
|
}
|
|
|
|
unsigned int len;
|
|
for (unsigned int addr = region_start; addr <= region_end; addr += len) {
|
|
struct flash_region region;
|
|
get_flash_region(flashctx, addr, ®ion);
|
|
len = min(region_end, region.end) - addr + 1;
|
|
|
|
if (region.write_prot) {
|
|
msg_gdbg("%s: cannot erase inside %s "
|
|
"region (%#08"PRIx32"..%#08"PRIx32"), skipping range (%#08x..%#08x).\n",
|
|
__func__, region.name,
|
|
region.start, region.end,
|
|
addr, addr + len - 1);
|
|
free(region.name);
|
|
continue;
|
|
}
|
|
|
|
msg_gdbg("%s: %s region (%#08"PRIx32"..%#08"PRIx32") is "
|
|
"writable, erasing range (%#08x..%#08x).\n",
|
|
__func__, region.name,
|
|
region.start, region.end,
|
|
addr, addr + len - 1);
|
|
free(region.name);
|
|
|
|
|
|
ret = erase_write_helper(flashctx, addr, addr + len - 1, curcontents, newcontents, erase_layout, all_skipped);
|
|
if (ret)
|
|
goto _end;
|
|
}
|
|
_end:
|
|
if (old_start_buf) {
|
|
memcpy(newcontents + region_start, old_start_buf, start_buf_len);
|
|
free(old_start_buf);
|
|
}
|
|
|
|
if (old_end_buf) {
|
|
memcpy(newcontents + old_end + 1, old_end_buf, end_buf_len);
|
|
free(old_end_buf);
|
|
}
|
|
|
|
msg_cinfo("Erase/write done from %"PRIx32" to %"PRIx32"\n", region_start, region_end);
|
|
return ret;
|
|
}
|