1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-27 15:12:36 +02:00
flashrom/sst49lfxxxc.c
Carl-Daniel Hailfinger 5820f42ef2 Introduce a type "chipaddr" to abstract the offsets within flash regions
Use chipaddr instead of volatile uint8_t * because when we access chips
in external flashers, they are not accessed via pointers at all.

Benefits: This allows us to differentiate between volatile machine
memory accesses and flash chip accesses. It also enforces usage
of chip_{read,write}[bwl] to access flash chips, so nobody will
unintentionally use pointers to access chips anymore. Some unneeded
casts are removed as well. Grepping for chip operations and machine
memory operations doesn't yield any false positives anymore.

Compile tested on 32 bit and 64 bit Linux.

Corresponding to flashrom svn r519.

Signed-off-by: Carl-Daniel Hailfinger <c-d.hailfinger.devel.2006@gmx.net>
Acked-by: Uwe Hermann <uwe@hermann-uwe.de>
2009-05-16 21:22:56 +00:00

190 lines
5.2 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2005-2007 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <errno.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "flash.h"
#define SECTOR_ERASE 0x30
#define BLOCK_ERASE 0x20
#define ERASE 0xD0
#define AUTO_PGRM 0x10
#define RESET 0xFF
#define READ_ID 0x90
#define READ_STATUS 0x70
#define CLEAR_STATUS 0x50
#define STATUS_BPS (1 << 1)
#define STATUS_ESS (1 << 6)
#define STATUS_WSMS (1 << 7)
static __inline__ int write_lockbits_49lfxxxc(chipaddr bios, int size,
unsigned char bits)
{
int i, left = size;
unsigned long address;
//printf("bios=0x%08lx\n", (unsigned long)bios);
for (i = 0; left > 65536; i++, left -= 65536) {
//printf("lockbits at address=0x%08lx is 0x%01x\n", (unsigned long)0xFFC00000 - size + (i * 65536) + 2, *(bios + (i * 65536) + 2) );
chip_writeb(bits, bios + (i * 65536) + 2);
}
address = i * 65536;
//printf("lockbits at address=0x%08lx is 0x%01x\n", (unsigned long)0xFFc00000 - size + address + 2, *(bios + address + 2) );
chip_writeb(bits, bios + address + 2);
address += 32768;
//printf("lockbits at address=0x%08lx is 0x%01x\n", (unsigned long)0xFFc00000 - size + address + 2, *(bios + address + 2) );
chip_writeb(bits, bios + address + 2);
address += 8192;
//printf("lockbits at address=0x%08lx is 0x%01x\n", (unsigned long)0xFFc00000 - size + address + 2, *(bios + address + 2) );
chip_writeb(bits, bios + address + 2);
address += 8192;
//printf("lockbits at address=0x%08lx is 0x%01x\n", (unsigned long)0xFFc00000 - size + address + 2, *(bios + address + 2) );
chip_writeb(bits, bios + address + 2);
return 0;
}
static __inline__ int erase_sector_49lfxxxc(chipaddr bios,
unsigned long address)
{
unsigned char status;
chip_writeb(SECTOR_ERASE, bios);
chip_writeb(ERASE, bios + address);
do {
status = chip_readb(bios);
if (status & (STATUS_ESS | STATUS_BPS)) {
printf("sector erase FAILED at address=0x%08lx status=0x%01x\n", bios + address, status);
chip_writeb(CLEAR_STATUS, bios);
return (-1);
}
} while (!(status & STATUS_WSMS));
return 0;
}
static __inline__ int write_sector_49lfxxxc(chipaddr bios,
uint8_t *src,
chipaddr dst,
unsigned int page_size)
{
int i;
unsigned char status;
chip_writeb(CLEAR_STATUS, bios);
for (i = 0; i < page_size; i++) {
/* transfer data from source to destination */
if (*src == 0xFF) {
dst++, src++;
/* If the data is 0xFF, don't program it */
continue;
}
/*issue AUTO PROGRAM command */
chip_writeb(AUTO_PGRM, bios);
chip_writeb(*src++, dst++);
do {
status = chip_readb(bios);
if (status & (STATUS_ESS | STATUS_BPS)) {
printf("sector write FAILED at address=0x%08lx status=0x%01x\n", dst, status);
chip_writeb(CLEAR_STATUS, bios);
return (-1);
}
} while (!(status & STATUS_WSMS));
}
return 0;
}
int probe_49lfxxxc(struct flashchip *flash)
{
chipaddr bios = flash->virtual_memory;
uint8_t id1, id2;
chip_writeb(RESET, bios);
chip_writeb(READ_ID, bios);
id1 = chip_readb(bios);
id2 = chip_readb(bios + 0x01);
chip_writeb(RESET, bios);
printf_debug("%s: id1 0x%02x, id2 0x%02x\n", __FUNCTION__, id1, id2);
if (!(id1 == flash->manufacture_id && id2 == flash->model_id))
return 0;
map_flash_registers(flash);
return 1;
}
int erase_49lfxxxc(struct flashchip *flash)
{
chipaddr bios = flash->virtual_memory;
chipaddr registers = flash->virtual_registers;
int i;
unsigned int total_size = flash->total_size * 1024;
write_lockbits_49lfxxxc(registers, total_size, 0);
for (i = 0; i < total_size; i += flash->page_size)
if (erase_sector_49lfxxxc(bios, i) != 0)
return (-1);
chip_writeb(RESET, bios);
return 0;
}
int write_49lfxxxc(struct flashchip *flash, uint8_t *buf)
{
int i;
int total_size = flash->total_size * 1024;
int page_size = flash->page_size;
chipaddr bios = flash->virtual_memory;
write_lockbits_49lfxxxc(flash->virtual_registers, total_size, 0);
printf("Programming page: ");
for (i = 0; i < total_size / page_size; i++) {
/* erase the page before programming */
erase_sector_49lfxxxc(bios, i * page_size);
/* write to the sector */
printf("%04d at address: 0x%08x", i, i * page_size);
write_sector_49lfxxxc(bios, buf + i * page_size,
bios + i * page_size, page_size);
printf("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b");
}
printf("\n");
chip_writeb(RESET, bios);
return 0;
}