mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-26 22:52:34 +02:00

Per clang-3.9, the compiler fails on #define ...defined(...) statements as they're undefined behavior (apparently with different behavior between gcc/clang and msvc, too). See clang's cfe repo commit r258128 for details. Change-Id: I82b6235e11b425fae45eebbe06b08f81c5bdbb98 Signed-off-by: Patrick Georgi <pgeorgi@google.com> Reviewed-on: https://review.coreboot.org/18792 Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org> Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
318 lines
8.1 KiB
C
318 lines
8.1 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2009,2010 Carl-Daniel Hailfinger
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "platform.h"
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <sys/types.h>
|
|
#if !defined (__DJGPP__) && !defined(__LIBPAYLOAD__)
|
|
/* No file access needed/possible to get hardware access permissions. */
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#endif
|
|
#include "flash.h"
|
|
#include "hwaccess.h"
|
|
|
|
#if !(IS_LINUX || IS_MACOSX || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__DJGPP__) || defined(__LIBPAYLOAD__) || defined(__sun) || defined(__gnu_hurd__))
|
|
#error "Unknown operating system"
|
|
#endif
|
|
|
|
#if IS_LINUX || IS_MACOSX || defined(__NetBSD__) || defined(__OpenBSD__)
|
|
#define USE_IOPL 1
|
|
#else
|
|
#define USE_IOPL 0
|
|
#endif
|
|
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
|
|
#define USE_DEV_IO 1
|
|
#else
|
|
#define USE_DEV_IO 0
|
|
#endif
|
|
#if defined(__gnu_hurd__)
|
|
#define USE_IOPERM 1
|
|
#else
|
|
#define USE_IOPERM 0
|
|
#endif
|
|
|
|
#if USE_IOPERM
|
|
#include <sys/io.h>
|
|
#endif
|
|
|
|
#if IS_X86 && USE_DEV_IO
|
|
int io_fd;
|
|
#endif
|
|
|
|
/* Prevent reordering and/or merging of reads/writes to hardware.
|
|
* Such reordering and/or merging would break device accesses which depend on the exact access order.
|
|
*/
|
|
static inline void sync_primitive(void)
|
|
{
|
|
/* This is not needed for...
|
|
* - x86: uses uncached accesses which have a strongly ordered memory model.
|
|
* - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model.
|
|
* - ARM: uses a strongly ordered memory model for device memories.
|
|
*
|
|
* See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt
|
|
*/
|
|
#if IS_PPC // cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h
|
|
asm("eieio" : : : "memory");
|
|
#elif IS_SPARC
|
|
#if defined(__sparc_v9__) || defined(__sparcv9)
|
|
/* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like
|
|
* RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we
|
|
* use the strongest hardware memory barriers that exist on Sparc V9. */
|
|
asm volatile ("membar #Sync" ::: "memory");
|
|
#elif defined(__sparc_v8__) || defined(__sparcv8)
|
|
/* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run
|
|
* on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable
|
|
* operation in the V8 instruction set anyway. If you know better then please tell us. */
|
|
asm volatile ("stbar");
|
|
#else
|
|
#error Unknown and/or unsupported SPARC instruction set version detected.
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if IS_X86 && !(defined(__DJGPP__) || defined(__LIBPAYLOAD__))
|
|
static int release_io_perms(void *p)
|
|
{
|
|
#if defined (__sun)
|
|
sysi86(SI86V86, V86SC_IOPL, 0);
|
|
#elif USE_DEV_IO
|
|
close(io_fd);
|
|
#elif USE_IOPERM
|
|
ioperm(0, 65536, 0);
|
|
#elif USE_IOPL
|
|
iopl(0);
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Get I/O permissions with automatic permission release on shutdown. */
|
|
int rget_io_perms(void)
|
|
{
|
|
#if IS_X86 && !(defined(__DJGPP__) || defined(__LIBPAYLOAD__))
|
|
#if defined (__sun)
|
|
if (sysi86(SI86V86, V86SC_IOPL, PS_IOPL) != 0) {
|
|
#elif USE_DEV_IO
|
|
if ((io_fd = open("/dev/io", O_RDWR)) < 0) {
|
|
#elif USE_IOPERM
|
|
if (ioperm(0, 65536, 1) != 0) {
|
|
#elif USE_IOPL
|
|
if (iopl(3) != 0) {
|
|
#endif
|
|
msg_perr("ERROR: Could not get I/O privileges (%s).\n", strerror(errno));
|
|
msg_perr("You need to be root.\n");
|
|
#if defined (__OpenBSD__)
|
|
msg_perr("If you are root already please set securelevel=-1 in /etc/rc.securelevel and\n"
|
|
"reboot, or reboot into single user mode.\n");
|
|
#elif defined(__NetBSD__)
|
|
msg_perr("If you are root already please reboot into single user mode or make sure\n"
|
|
"that your kernel configuration has the option INSECURE enabled.\n");
|
|
#endif
|
|
return 1;
|
|
} else {
|
|
register_shutdown(release_io_perms, NULL);
|
|
}
|
|
#else
|
|
/* DJGPP and libpayload environments have full PCI port I/O permissions by default. */
|
|
/* PCI port I/O support is unimplemented on PPC/MIPS and unavailable on ARM. */
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void mmio_writeb(uint8_t val, void *addr)
|
|
{
|
|
*(volatile uint8_t *) addr = val;
|
|
sync_primitive();
|
|
}
|
|
|
|
void mmio_writew(uint16_t val, void *addr)
|
|
{
|
|
*(volatile uint16_t *) addr = val;
|
|
sync_primitive();
|
|
}
|
|
|
|
void mmio_writel(uint32_t val, void *addr)
|
|
{
|
|
*(volatile uint32_t *) addr = val;
|
|
sync_primitive();
|
|
}
|
|
|
|
uint8_t mmio_readb(const void *addr)
|
|
{
|
|
return *(volatile const uint8_t *) addr;
|
|
}
|
|
|
|
uint16_t mmio_readw(const void *addr)
|
|
{
|
|
return *(volatile const uint16_t *) addr;
|
|
}
|
|
|
|
uint32_t mmio_readl(const void *addr)
|
|
{
|
|
return *(volatile const uint32_t *) addr;
|
|
}
|
|
|
|
void mmio_readn(const void *addr, uint8_t *buf, size_t len)
|
|
{
|
|
memcpy(buf, addr, len);
|
|
return;
|
|
}
|
|
|
|
void mmio_le_writeb(uint8_t val, void *addr)
|
|
{
|
|
mmio_writeb(cpu_to_le8(val), addr);
|
|
}
|
|
|
|
void mmio_le_writew(uint16_t val, void *addr)
|
|
{
|
|
mmio_writew(cpu_to_le16(val), addr);
|
|
}
|
|
|
|
void mmio_le_writel(uint32_t val, void *addr)
|
|
{
|
|
mmio_writel(cpu_to_le32(val), addr);
|
|
}
|
|
|
|
uint8_t mmio_le_readb(const void *addr)
|
|
{
|
|
return le_to_cpu8(mmio_readb(addr));
|
|
}
|
|
|
|
uint16_t mmio_le_readw(const void *addr)
|
|
{
|
|
return le_to_cpu16(mmio_readw(addr));
|
|
}
|
|
|
|
uint32_t mmio_le_readl(const void *addr)
|
|
{
|
|
return le_to_cpu32(mmio_readl(addr));
|
|
}
|
|
|
|
enum mmio_write_type {
|
|
mmio_write_type_b,
|
|
mmio_write_type_w,
|
|
mmio_write_type_l,
|
|
};
|
|
|
|
struct undo_mmio_write_data {
|
|
void *addr;
|
|
int reg;
|
|
enum mmio_write_type type;
|
|
union {
|
|
uint8_t bdata;
|
|
uint16_t wdata;
|
|
uint32_t ldata;
|
|
};
|
|
};
|
|
|
|
int undo_mmio_write(void *p)
|
|
{
|
|
struct undo_mmio_write_data *data = p;
|
|
msg_pdbg("Restoring MMIO space at %p\n", data->addr);
|
|
switch (data->type) {
|
|
case mmio_write_type_b:
|
|
mmio_writeb(data->bdata, data->addr);
|
|
break;
|
|
case mmio_write_type_w:
|
|
mmio_writew(data->wdata, data->addr);
|
|
break;
|
|
case mmio_write_type_l:
|
|
mmio_writel(data->ldata, data->addr);
|
|
break;
|
|
}
|
|
/* p was allocated in register_undo_mmio_write. */
|
|
free(p);
|
|
return 0;
|
|
}
|
|
|
|
#define register_undo_mmio_write(a, c) \
|
|
{ \
|
|
struct undo_mmio_write_data *undo_mmio_write_data; \
|
|
undo_mmio_write_data = malloc(sizeof(struct undo_mmio_write_data)); \
|
|
if (!undo_mmio_write_data) { \
|
|
msg_gerr("Out of memory!\n"); \
|
|
exit(1); \
|
|
} \
|
|
undo_mmio_write_data->addr = a; \
|
|
undo_mmio_write_data->type = mmio_write_type_##c; \
|
|
undo_mmio_write_data->c##data = mmio_read##c(a); \
|
|
register_shutdown(undo_mmio_write, undo_mmio_write_data); \
|
|
}
|
|
|
|
#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b)
|
|
#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w)
|
|
#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l)
|
|
|
|
void rmmio_writeb(uint8_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writeb(addr);
|
|
mmio_writeb(val, addr);
|
|
}
|
|
|
|
void rmmio_writew(uint16_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writew(addr);
|
|
mmio_writew(val, addr);
|
|
}
|
|
|
|
void rmmio_writel(uint32_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writel(addr);
|
|
mmio_writel(val, addr);
|
|
}
|
|
|
|
void rmmio_le_writeb(uint8_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writeb(addr);
|
|
mmio_le_writeb(val, addr);
|
|
}
|
|
|
|
void rmmio_le_writew(uint16_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writew(addr);
|
|
mmio_le_writew(val, addr);
|
|
}
|
|
|
|
void rmmio_le_writel(uint32_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writel(addr);
|
|
mmio_le_writel(val, addr);
|
|
}
|
|
|
|
void rmmio_valb(void *addr)
|
|
{
|
|
register_undo_mmio_writeb(addr);
|
|
}
|
|
|
|
void rmmio_valw(void *addr)
|
|
{
|
|
register_undo_mmio_writew(addr);
|
|
}
|
|
|
|
void rmmio_vall(void *addr)
|
|
{
|
|
register_undo_mmio_writel(addr);
|
|
}
|