mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-26 22:52:34 +02:00

This reverts commit 40892b0c08fbc8029921e91511dd3f91fc956f90. The feature of returning progress for libflashrom users was introduced in original commit, however later a bug was found and reported as https://ticket.coreboot.org/issues/390. Reverting in a release branch to unblock release candidate, since it is unknown how much time needed to fix the bug. Meanwhile the feature remains in a master branch and will be fixed under ticket 390. TEST=scenarios below run successfully 1) flashrom -h does not show --progress 2) flashrom -p dummy:emulate=W25Q128FV -r /tmp/dump.bin 3) flashrom -p dummy:emulate=W25Q128FV -v /tmp/dump.bin 4) flashrom -p dummy:emulate=W25Q128FV -E 5) head -c 16777216 </dev/urandom >/tmp/image.bin flashrom -p dummy:image=/tmp/image.bin,emulate=W25Q128FV \ -w /tmp/dump.bin Change-Id: Id3d7ffcaf266a60a44eb453fd09b7c63c05349c2 Signed-off-by: Edward O'Callaghan <quasisec@google.com> Signed-off-by: Anastasia Klimchuk <aklm@chromium.org> Reviewed-on: https://review.coreboot.org/c/flashrom/+/69283 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Felix Singer <felixsinger@posteo.net>
866 lines
24 KiB
C
866 lines
24 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
|
|
* Copyright (C) 2008 coresystems GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
/*
|
|
* Contains the common SPI chip driver functions
|
|
*/
|
|
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include <stdbool.h>
|
|
#include "flash.h"
|
|
#include "flashchips.h"
|
|
#include "chipdrivers.h"
|
|
#include "programmer.h"
|
|
#include "spi.h"
|
|
|
|
enum id_type {
|
|
RDID,
|
|
RDID4,
|
|
REMS,
|
|
RES2,
|
|
RES3,
|
|
NUM_ID_TYPES,
|
|
};
|
|
|
|
static struct {
|
|
bool is_cached;
|
|
unsigned char bytes[4]; /* enough to hold largest ID type */
|
|
} id_cache[NUM_ID_TYPES];
|
|
|
|
void clear_spi_id_cache(void)
|
|
{
|
|
memset(id_cache, 0, sizeof(id_cache));
|
|
return;
|
|
}
|
|
|
|
static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes)
|
|
{
|
|
static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
|
|
int ret;
|
|
int i;
|
|
|
|
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
|
|
if (ret)
|
|
return ret;
|
|
msg_cspew("RDID returned");
|
|
for (i = 0; i < bytes; i++)
|
|
msg_cspew(" 0x%02x", readarr[i]);
|
|
msg_cspew(". ");
|
|
return 0;
|
|
}
|
|
|
|
static int spi_rems(struct flashctx *flash, unsigned char *readarr)
|
|
{
|
|
static const unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, };
|
|
int ret;
|
|
|
|
ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
|
|
if (ret)
|
|
return ret;
|
|
msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]);
|
|
return 0;
|
|
}
|
|
|
|
static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes)
|
|
{
|
|
static const unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, };
|
|
int ret;
|
|
int i;
|
|
|
|
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
|
|
if (ret)
|
|
return ret;
|
|
msg_cspew("RES returned");
|
|
for (i = 0; i < bytes; i++)
|
|
msg_cspew(" 0x%02x", readarr[i]);
|
|
msg_cspew(". ");
|
|
return 0;
|
|
}
|
|
|
|
int spi_write_enable(struct flashctx *flash)
|
|
{
|
|
static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
|
|
int result;
|
|
|
|
/* Send WREN (Write Enable) */
|
|
result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
|
|
|
|
if (result)
|
|
msg_cerr("%s failed\n", __func__);
|
|
|
|
return result;
|
|
}
|
|
|
|
int spi_write_disable(struct flashctx *flash)
|
|
{
|
|
static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
|
|
|
|
/* Send WRDI (Write Disable) */
|
|
return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
|
|
}
|
|
|
|
static void rdid_get_ids(unsigned char *readarr, int bytes,
|
|
uint32_t *id1, uint32_t *id2)
|
|
{
|
|
if (!oddparity(readarr[0]))
|
|
msg_cdbg("RDID byte 0 parity violation. ");
|
|
|
|
/* Check if this is a continuation vendor ID.
|
|
* FIXME: Handle continuation device IDs.
|
|
*/
|
|
if (readarr[0] == 0x7f) {
|
|
if (!oddparity(readarr[1]))
|
|
msg_cdbg("RDID byte 1 parity violation. ");
|
|
*id1 = (readarr[0] << 8) | readarr[1];
|
|
*id2 = readarr[2];
|
|
if (bytes > 3) {
|
|
*id2 <<= 8;
|
|
*id2 |= readarr[3];
|
|
}
|
|
} else {
|
|
*id1 = readarr[0];
|
|
*id2 = (readarr[1] << 8) | readarr[2];
|
|
}
|
|
}
|
|
|
|
static int compare_id(const struct flashctx *flash, uint32_t id1, uint32_t id2)
|
|
{
|
|
const struct flashchip *chip = flash->chip;
|
|
|
|
msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
|
|
if (id1 == chip->manufacture_id && id2 == chip->model_id)
|
|
return 1;
|
|
|
|
/* Test if this is a pure vendor match. */
|
|
if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
|
|
return 1;
|
|
|
|
/* Test if there is any vendor ID. */
|
|
if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int probe_spi_rdid_generic(struct flashctx *flash, int bytes)
|
|
{
|
|
uint32_t id1, id2;
|
|
enum id_type idty = bytes == 3 ? RDID : RDID4;
|
|
|
|
if (!id_cache[idty].is_cached) {
|
|
const int ret = spi_rdid(flash, id_cache[idty].bytes, bytes);
|
|
if (ret == SPI_INVALID_LENGTH)
|
|
msg_cinfo("%d byte RDID not supported on this SPI controller\n", bytes);
|
|
if (ret)
|
|
return 0;
|
|
id_cache[idty].is_cached = true;
|
|
}
|
|
|
|
rdid_get_ids(id_cache[idty].bytes, bytes, &id1, &id2);
|
|
return compare_id(flash, id1, id2);
|
|
}
|
|
|
|
int probe_spi_rdid(struct flashctx *flash)
|
|
{
|
|
return probe_spi_rdid_generic(flash, 3);
|
|
}
|
|
|
|
int probe_spi_rdid4(struct flashctx *flash)
|
|
{
|
|
return probe_spi_rdid_generic(flash, 4);
|
|
}
|
|
|
|
int probe_spi_rems(struct flashctx *flash)
|
|
{
|
|
uint32_t id1, id2;
|
|
|
|
if (!id_cache[REMS].is_cached) {
|
|
if (spi_rems(flash, id_cache[REMS].bytes))
|
|
return 0;
|
|
id_cache[REMS].is_cached = true;
|
|
}
|
|
|
|
id1 = id_cache[REMS].bytes[0];
|
|
id2 = id_cache[REMS].bytes[1];
|
|
return compare_id(flash, id1, id2);
|
|
}
|
|
|
|
int probe_spi_res1(struct flashctx *flash)
|
|
{
|
|
static const unsigned char allff[] = {0xff, 0xff, 0xff};
|
|
static const unsigned char all00[] = {0x00, 0x00, 0x00};
|
|
unsigned char readarr[3];
|
|
uint32_t id2;
|
|
|
|
/* We only want one-byte RES if RDID and REMS are unusable. */
|
|
|
|
/* Check if RDID is usable and does not return 0xff 0xff 0xff or
|
|
* 0x00 0x00 0x00. In that case, RES is pointless.
|
|
*/
|
|
if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) &&
|
|
memcmp(readarr, all00, 3)) {
|
|
msg_cdbg("Ignoring RES in favour of RDID.\n");
|
|
return 0;
|
|
}
|
|
/* Check if REMS is usable and does not return 0xff 0xff or
|
|
* 0x00 0x00. In that case, RES is pointless.
|
|
*/
|
|
if (!spi_rems(flash, readarr) &&
|
|
memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
|
|
memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
|
|
msg_cdbg("Ignoring RES in favour of REMS.\n");
|
|
return 0;
|
|
}
|
|
|
|
if (spi_res(flash, readarr, 1)) {
|
|
return 0;
|
|
}
|
|
|
|
id2 = readarr[0];
|
|
|
|
msg_cdbg("%s: id 0x%x\n", __func__, id2);
|
|
|
|
if (id2 != flash->chip->model_id)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int probe_spi_res2(struct flashctx *flash)
|
|
{
|
|
uint32_t id1, id2;
|
|
|
|
if (!id_cache[RES2].is_cached) {
|
|
if (spi_res(flash, id_cache[RES2].bytes, 2))
|
|
return 0;
|
|
id_cache[RES2].is_cached = true;
|
|
}
|
|
|
|
id1 = id_cache[RES2].bytes[0];
|
|
id2 = id_cache[RES2].bytes[1];
|
|
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
|
|
|
|
if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int probe_spi_res3(struct flashctx *flash)
|
|
{
|
|
uint32_t id1, id2;
|
|
|
|
if (!id_cache[RES3].is_cached) {
|
|
if (spi_res(flash, id_cache[RES3].bytes, 3))
|
|
return 0;
|
|
id_cache[RES3].is_cached = true;
|
|
}
|
|
|
|
id1 = (id_cache[RES3].bytes[0] << 8) | id_cache[RES3].bytes[1];
|
|
id2 = id_cache[RES3].bytes[3];
|
|
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
|
|
|
|
if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Only used for some Atmel chips. */
|
|
int probe_spi_at25f(struct flashctx *flash)
|
|
{
|
|
static const unsigned char cmd[AT25F_RDID_OUTSIZE] = { AT25F_RDID };
|
|
unsigned char readarr[AT25F_RDID_INSIZE];
|
|
uint32_t id1;
|
|
uint32_t id2;
|
|
|
|
if (spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr))
|
|
return 0;
|
|
|
|
id1 = readarr[0];
|
|
id2 = readarr[1];
|
|
|
|
msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
|
|
|
|
if (id1 == flash->chip->manufacture_id && id2 == flash->chip->model_id)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_poll_wip(struct flashctx *const flash, const unsigned int poll_delay)
|
|
{
|
|
/* FIXME: We don't time out. */
|
|
while (true) {
|
|
uint8_t status;
|
|
int ret = spi_read_register(flash, STATUS1, &status);
|
|
if (ret)
|
|
return ret;
|
|
if (!(status & SPI_SR_WIP))
|
|
return 0;
|
|
|
|
programmer_delay(flash, poll_delay);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Execute WREN plus another one byte `op`, optionally poll WIP afterwards.
|
|
*
|
|
* @param flash the flash chip's context
|
|
* @param op the operation to execute
|
|
* @param poll_delay interval in us for polling WIP, don't poll if zero
|
|
* @return 0 on success, non-zero otherwise
|
|
*/
|
|
static int spi_simple_write_cmd(struct flashctx *const flash, const uint8_t op, const unsigned int poll_delay)
|
|
{
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.readarr = 0,
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
}, {
|
|
.readarr = 0,
|
|
.writecnt = 1,
|
|
.writearr = (const unsigned char[]){ op },
|
|
},
|
|
NULL_SPI_CMD,
|
|
};
|
|
|
|
const int result = spi_send_multicommand(flash, cmds);
|
|
if (result)
|
|
msg_cerr("%s failed during command execution\n", __func__);
|
|
|
|
const int status = poll_delay ? spi_poll_wip(flash, poll_delay) : 0;
|
|
|
|
return result ? result : status;
|
|
}
|
|
|
|
static int spi_write_extended_address_register(struct flashctx *const flash, const uint8_t regdata)
|
|
{
|
|
uint8_t op;
|
|
if (flash->chip->feature_bits & FEATURE_4BA_EAR_C5C8) {
|
|
op = JEDEC_WRITE_EXT_ADDR_REG;
|
|
} else if (flash->chip->feature_bits & FEATURE_4BA_EAR_1716) {
|
|
op = ALT_WRITE_EXT_ADDR_REG_17;
|
|
} else {
|
|
msg_cerr("Flash misses feature flag for extended-address register.\n");
|
|
return -1;
|
|
}
|
|
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.readarr = 0,
|
|
.writecnt = 1,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
}, {
|
|
.readarr = 0,
|
|
.writecnt = 2,
|
|
.writearr = (const unsigned char[]){ op, regdata },
|
|
},
|
|
NULL_SPI_CMD,
|
|
};
|
|
|
|
const int result = spi_send_multicommand(flash, cmds);
|
|
if (result)
|
|
msg_cerr("%s failed during command execution\n", __func__);
|
|
return result;
|
|
}
|
|
|
|
int spi_set_extended_address(struct flashctx *const flash, const uint8_t addr_high)
|
|
{
|
|
if (flash->address_high_byte != addr_high &&
|
|
spi_write_extended_address_register(flash, addr_high))
|
|
return -1;
|
|
flash->address_high_byte = addr_high;
|
|
return 0;
|
|
}
|
|
|
|
static int spi_prepare_address(struct flashctx *const flash, uint8_t cmd_buf[],
|
|
const bool native_4ba, const unsigned int addr)
|
|
{
|
|
if (native_4ba || flash->in_4ba_mode) {
|
|
if (!spi_master_4ba(flash)) {
|
|
msg_cwarn("4-byte address requested but master can't handle 4-byte addresses.\n");
|
|
return -1;
|
|
}
|
|
cmd_buf[1] = (addr >> 24) & 0xff;
|
|
cmd_buf[2] = (addr >> 16) & 0xff;
|
|
cmd_buf[3] = (addr >> 8) & 0xff;
|
|
cmd_buf[4] = (addr >> 0) & 0xff;
|
|
return 4;
|
|
} else {
|
|
if (flash->chip->feature_bits & FEATURE_4BA_EAR_ANY) {
|
|
if (spi_set_extended_address(flash, addr >> 24))
|
|
return -1;
|
|
} else if (addr >> 24) {
|
|
msg_cerr("Can't handle 4-byte address for opcode '0x%02x'\n"
|
|
"with this chip/programmer combination.\n", cmd_buf[0]);
|
|
return -1;
|
|
}
|
|
cmd_buf[1] = (addr >> 16) & 0xff;
|
|
cmd_buf[2] = (addr >> 8) & 0xff;
|
|
cmd_buf[3] = (addr >> 0) & 0xff;
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Execute WREN plus another `op` that takes an address and
|
|
* optional data, poll WIP afterwards.
|
|
*
|
|
* @param flash the flash chip's context
|
|
* @param op the operation to execute
|
|
* @param native_4ba whether `op` always takes a 4-byte address
|
|
* @param addr the address parameter to `op`
|
|
* @param out_bytes bytes to send after the address,
|
|
* may be NULL if and only if `out_bytes` is 0
|
|
* @param out_bytes number of bytes to send, 256 at most, may be zero
|
|
* @param poll_delay interval in us for polling WIP
|
|
* @return 0 on success, non-zero otherwise
|
|
*/
|
|
static int spi_write_cmd(struct flashctx *const flash, const uint8_t op,
|
|
const bool native_4ba, const unsigned int addr,
|
|
const uint8_t *const out_bytes, const size_t out_len,
|
|
const unsigned int poll_delay)
|
|
{
|
|
uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN + 256];
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.readarr = 0,
|
|
.writecnt = 1,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
}, {
|
|
.readarr = 0,
|
|
.writearr = cmd,
|
|
},
|
|
NULL_SPI_CMD,
|
|
};
|
|
|
|
cmd[0] = op;
|
|
const int addr_len = spi_prepare_address(flash, cmd, native_4ba, addr);
|
|
if (addr_len < 0)
|
|
return 1;
|
|
|
|
if (1 + addr_len + out_len > sizeof(cmd)) {
|
|
msg_cerr("%s called for too long a write\n", __func__);
|
|
return 1;
|
|
}
|
|
if (!out_bytes && out_len > 0)
|
|
return 1;
|
|
|
|
memcpy(cmd + 1 + addr_len, out_bytes, out_len);
|
|
cmds[1].writecnt = 1 + addr_len + out_len;
|
|
|
|
const int result = spi_send_multicommand(flash, cmds);
|
|
if (result)
|
|
msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
|
|
|
|
const int status = spi_poll_wip(flash, poll_delay);
|
|
|
|
return result ? result : status;
|
|
}
|
|
|
|
static int spi_chip_erase_60(struct flashctx *flash)
|
|
{
|
|
/* This usually takes 1-85s, so wait in 1s steps. */
|
|
return spi_simple_write_cmd(flash, JEDEC_CE_60, 1000 * 1000);
|
|
}
|
|
|
|
static int spi_chip_erase_62(struct flashctx *flash)
|
|
{
|
|
/* This usually takes 2-5s, so wait in 100ms steps. */
|
|
return spi_simple_write_cmd(flash, JEDEC_CE_62, 100 * 1000);
|
|
}
|
|
|
|
static int spi_chip_erase_c7(struct flashctx *flash)
|
|
{
|
|
/* This usually takes 1-85s, so wait in 1s steps. */
|
|
return spi_simple_write_cmd(flash, JEDEC_CE_C7, 1000 * 1000);
|
|
}
|
|
|
|
int spi_block_erase_52(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
/* This usually takes 100-4000ms, so wait in 100ms steps. */
|
|
return spi_write_cmd(flash, JEDEC_BE_52, false, addr, NULL, 0, 100 * 1000);
|
|
}
|
|
|
|
/* Block size is usually
|
|
* 32M (one die) for Micron
|
|
*/
|
|
int spi_block_erase_c4(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
/* This usually takes 240-480s, so wait in 500ms steps. */
|
|
return spi_write_cmd(flash, JEDEC_BE_C4, false, addr, NULL, 0, 500 * 1000);
|
|
}
|
|
|
|
/* Block size is usually
|
|
* 64k for Macronix
|
|
* 32k for SST
|
|
* 4-32k non-uniform for EON
|
|
*/
|
|
int spi_block_erase_d8(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
/* This usually takes 100-4000ms, so wait in 100ms steps. */
|
|
return spi_write_cmd(flash, JEDEC_BE_D8, false, addr, NULL, 0, 100 * 1000);
|
|
}
|
|
|
|
/* Block size is usually
|
|
* 4k for PMC
|
|
*/
|
|
int spi_block_erase_d7(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
/* This usually takes 100-4000ms, so wait in 100ms steps. */
|
|
return spi_write_cmd(flash, JEDEC_BE_D7, false, addr, NULL, 0, 100 * 1000);
|
|
}
|
|
|
|
/* Page erase (usually 256B blocks) */
|
|
int spi_block_erase_db(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
/* This takes up to 20ms usually (on worn out devices
|
|
up to the 0.5s range), so wait in 1ms steps. */
|
|
return spi_write_cmd(flash, 0xdb, false, addr, NULL, 0, 1 * 1000);
|
|
}
|
|
|
|
/* Sector size is usually 4k, though Macronix eliteflash has 64k */
|
|
int spi_block_erase_20(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
/* This usually takes 15-800ms, so wait in 10ms steps. */
|
|
return spi_write_cmd(flash, JEDEC_SE, false, addr, NULL, 0, 10 * 1000);
|
|
}
|
|
|
|
int spi_block_erase_50(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
/* This usually takes 10ms, so wait in 1ms steps. */
|
|
return spi_write_cmd(flash, JEDEC_BE_50, false, addr, NULL, 0, 1 * 1000);
|
|
}
|
|
|
|
int spi_block_erase_81(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
/* This usually takes 8ms, so wait in 1ms steps. */
|
|
return spi_write_cmd(flash, JEDEC_BE_81, false, addr, NULL, 0, 1 * 1000);
|
|
}
|
|
|
|
int spi_block_erase_60(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
|
|
msg_cerr("%s called with incorrect arguments\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
return spi_chip_erase_60(flash);
|
|
}
|
|
|
|
int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
|
|
msg_cerr("%s called with incorrect arguments\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
return spi_chip_erase_62(flash);
|
|
}
|
|
|
|
int spi_block_erase_c7(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
|
|
msg_cerr("%s called with incorrect arguments\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
return spi_chip_erase_c7(flash);
|
|
}
|
|
|
|
/* Erase 4 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
|
|
int spi_block_erase_21(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
/* This usually takes 15-800ms, so wait in 10ms steps. */
|
|
return spi_write_cmd(flash, 0x21, true, addr, NULL, 0, 10 * 1000);
|
|
}
|
|
|
|
/* Erase 32 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
|
|
int spi_block_erase_53(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
/* This usually takes 100-4000ms, so wait in 100ms steps. */
|
|
return spi_write_cmd(flash, 0x53, true, addr, NULL, 0, 100 * 1000);
|
|
}
|
|
|
|
/* Erase 32 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
|
|
int spi_block_erase_5c(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
/* This usually takes 100-4000ms, so wait in 100ms steps. */
|
|
return spi_write_cmd(flash, 0x5c, true, addr, NULL, 0, 100 * 1000);
|
|
}
|
|
|
|
/* Erase 64 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
|
|
int spi_block_erase_dc(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
/* This usually takes 100-4000ms, so wait in 100ms steps. */
|
|
return spi_write_cmd(flash, 0xdc, true, addr, NULL, 0, 100 * 1000);
|
|
}
|
|
|
|
static const struct {
|
|
erasefunc_t *func;
|
|
uint8_t opcode;
|
|
} function_opcode_list[] = {
|
|
{&spi_block_erase_20, 0x20},
|
|
{&spi_block_erase_21, 0x21},
|
|
{&spi_block_erase_50, 0x50},
|
|
{&spi_block_erase_52, 0x52},
|
|
{&spi_block_erase_53, 0x53},
|
|
{&spi_block_erase_5c, 0x5c},
|
|
{&spi_block_erase_60, 0x60},
|
|
{&spi_block_erase_62, 0x62},
|
|
{&spi_block_erase_81, 0x81},
|
|
{&spi_block_erase_c4, 0xc4},
|
|
{&spi_block_erase_c7, 0xc7},
|
|
{&spi_block_erase_d7, 0xd7},
|
|
{&spi_block_erase_d8, 0xd8},
|
|
{&spi_block_erase_db, 0xdb},
|
|
{&spi_block_erase_dc, 0xdc},
|
|
};
|
|
|
|
erasefunc_t *spi_get_erasefn_from_opcode(uint8_t opcode)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < ARRAY_SIZE(function_opcode_list); i++) {
|
|
if (function_opcode_list[i].opcode == opcode)
|
|
return function_opcode_list[i].func;
|
|
}
|
|
msg_cinfo("%s: unknown erase opcode (0x%02x). Please report "
|
|
"this at flashrom@flashrom.org\n", __func__, opcode);
|
|
return NULL;
|
|
}
|
|
|
|
uint8_t spi_get_opcode_from_erasefn(erasefunc_t *func)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < ARRAY_SIZE(function_opcode_list); i++) {
|
|
if (function_opcode_list[i].func == func)
|
|
return function_opcode_list[i].opcode;
|
|
}
|
|
msg_cinfo("%s: unknown erase function (0x%p). Please report "
|
|
"this at flashrom@flashrom.org\n", __func__, func);
|
|
return 0x00; //Assuming 0x00 is not a erase function opcode
|
|
}
|
|
|
|
static int spi_nbyte_program(struct flashctx *flash, unsigned int addr, const uint8_t *bytes, unsigned int len)
|
|
{
|
|
const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_WRITE && spi_master_4ba(flash);
|
|
const uint8_t op = native_4ba ? JEDEC_BYTE_PROGRAM_4BA : JEDEC_BYTE_PROGRAM;
|
|
return spi_write_cmd(flash, op, native_4ba, addr, bytes, len, 10);
|
|
}
|
|
|
|
int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes,
|
|
unsigned int len)
|
|
{
|
|
const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_READ && spi_master_4ba(flash);
|
|
uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN] = { native_4ba ? JEDEC_READ_4BA : JEDEC_READ, };
|
|
|
|
const int addr_len = spi_prepare_address(flash, cmd, native_4ba, address);
|
|
if (addr_len < 0)
|
|
return 1;
|
|
|
|
/* Send Read */
|
|
return spi_send_command(flash, 1 + addr_len, len, cmd, bytes);
|
|
}
|
|
|
|
/*
|
|
* Read a part of the flash chip.
|
|
* Data is read in chunks with a maximum size of chunksize.
|
|
*/
|
|
int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
|
|
unsigned int len, unsigned int chunksize)
|
|
{
|
|
int ret;
|
|
size_t to_read;
|
|
for (; len; len -= to_read, buf += to_read, start += to_read) {
|
|
to_read = min(chunksize, len);
|
|
ret = spi_nbyte_read(flash, start, buf, to_read);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write a part of the flash chip.
|
|
* FIXME: Use the chunk code from Michael Karcher instead.
|
|
* Each page is written separately in chunks with a maximum size of chunksize.
|
|
*/
|
|
int spi_write_chunked(struct flashctx *flash, const uint8_t *buf, unsigned int start,
|
|
unsigned int len, unsigned int chunksize)
|
|
{
|
|
unsigned int i, j, starthere, lenhere, towrite;
|
|
/* FIXME: page_size is the wrong variable. We need max_writechunk_size
|
|
* in struct flashctx to do this properly. All chips using
|
|
* spi_chip_write_256 have page_size set to max_writechunk_size, so
|
|
* we're OK for now.
|
|
*/
|
|
unsigned int page_size = flash->chip->page_size;
|
|
|
|
/* Warning: This loop has a very unusual condition and body.
|
|
* The loop needs to go through each page with at least one affected
|
|
* byte. The lowest page number is (start / page_size) since that
|
|
* division rounds down. The highest page number we want is the page
|
|
* where the last byte of the range lives. That last byte has the
|
|
* address (start + len - 1), thus the highest page number is
|
|
* (start + len - 1) / page_size. Since we want to include that last
|
|
* page as well, the loop condition uses <=.
|
|
*/
|
|
for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
|
|
/* Byte position of the first byte in the range in this page. */
|
|
/* starthere is an offset to the base address of the chip. */
|
|
starthere = max(start, i * page_size);
|
|
/* Length of bytes in the range in this page. */
|
|
lenhere = min(start + len, (i + 1) * page_size) - starthere;
|
|
for (j = 0; j < lenhere; j += chunksize) {
|
|
int rc;
|
|
|
|
towrite = min(chunksize, lenhere - j);
|
|
rc = spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Program chip using byte programming. (SLOW!)
|
|
* This is for chips which can only handle one byte writes
|
|
* and for chips where memory mapped programming is impossible
|
|
* (e.g. due to size constraints in IT87* for over 512 kB)
|
|
*/
|
|
/* real chunksize is 1, logical chunksize is 1 */
|
|
int spi_chip_write_1(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = start; i < start + len; i++) {
|
|
if (spi_nbyte_program(flash, i, buf + i - start, 1))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int default_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
|
|
{
|
|
uint32_t pos = start;
|
|
int result;
|
|
unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
|
|
JEDEC_AAI_WORD_PROGRAM,
|
|
};
|
|
|
|
/* The even start address and even length requirements can be either
|
|
* honored outside this function, or we can call spi_byte_program
|
|
* for the first and/or last byte and use AAI for the rest.
|
|
* FIXME: Move this to generic code.
|
|
*/
|
|
/* The data sheet requires a start address with the low bit cleared. */
|
|
if (start % 2) {
|
|
msg_cerr("%s: start address not even! Please report a bug at "
|
|
"flashrom@flashrom.org\n", __func__);
|
|
if (spi_chip_write_1(flash, buf, start, start % 2))
|
|
return SPI_GENERIC_ERROR;
|
|
pos += start % 2;
|
|
/* Do not return an error for now. */
|
|
//return SPI_GENERIC_ERROR;
|
|
}
|
|
/* The data sheet requires total AAI write length to be even. */
|
|
if (len % 2) {
|
|
msg_cerr("%s: total write length not even! Please report a "
|
|
"bug at flashrom@flashrom.org\n", __func__);
|
|
/* Do not return an error for now. */
|
|
//return SPI_GENERIC_ERROR;
|
|
}
|
|
|
|
result = spi_write_cmd(flash, JEDEC_AAI_WORD_PROGRAM, false, start, buf + pos - start, 2, 10);
|
|
if (result)
|
|
goto bailout;
|
|
|
|
/* We already wrote 2 bytes in the multicommand step. */
|
|
pos += 2;
|
|
|
|
/* Are there at least two more bytes to write? */
|
|
while (pos < start + len - 1) {
|
|
cmd[1] = buf[pos++ - start];
|
|
cmd[2] = buf[pos++ - start];
|
|
result = spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL);
|
|
if (result != 0) {
|
|
msg_cerr("%s failed during followup AAI command execution: %d\n", __func__, result);
|
|
goto bailout;
|
|
}
|
|
if (spi_poll_wip(flash, 10))
|
|
goto bailout;
|
|
}
|
|
|
|
/* Use WRDI to exit AAI mode. This needs to be done before issuing any other non-AAI command. */
|
|
result = spi_write_disable(flash);
|
|
if (result != 0) {
|
|
msg_cerr("%s failed to disable AAI mode.\n", __func__);
|
|
return SPI_GENERIC_ERROR;
|
|
}
|
|
|
|
/* Write remaining byte (if any). */
|
|
if (pos < start + len) {
|
|
if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
|
|
return SPI_GENERIC_ERROR;
|
|
}
|
|
|
|
return 0;
|
|
|
|
bailout:
|
|
result = spi_write_disable(flash);
|
|
if (result != 0)
|
|
msg_cerr("%s failed to disable AAI mode.\n", __func__);
|
|
return SPI_GENERIC_ERROR;
|
|
}
|
|
|
|
static int spi_enter_exit_4ba(struct flashctx *const flash, const bool enter)
|
|
{
|
|
const unsigned char cmd = enter ? JEDEC_ENTER_4_BYTE_ADDR_MODE : JEDEC_EXIT_4_BYTE_ADDR_MODE;
|
|
int ret = 1;
|
|
|
|
if (flash->chip->feature_bits & FEATURE_4BA_ENTER)
|
|
ret = spi_send_command(flash, sizeof(cmd), 0, &cmd, NULL);
|
|
else if (flash->chip->feature_bits & FEATURE_4BA_ENTER_WREN)
|
|
ret = spi_simple_write_cmd(flash, cmd, 0);
|
|
else if (flash->chip->feature_bits & FEATURE_4BA_ENTER_EAR7)
|
|
ret = spi_set_extended_address(flash, enter ? 0x80 : 0x00);
|
|
|
|
if (!ret)
|
|
flash->in_4ba_mode = enter;
|
|
return ret;
|
|
}
|
|
|
|
int spi_enter_4ba(struct flashctx *const flash)
|
|
{
|
|
return spi_enter_exit_4ba(flash, true);
|
|
}
|
|
|
|
int spi_exit_4ba(struct flashctx *flash)
|
|
{
|
|
return spi_enter_exit_4ba(flash, false);
|
|
}
|