1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-26 22:52:34 +02:00
flashrom/include/flash.h
Anastasia Klimchuk 75dc0655b9 Complete and fix progress feature implementation for all operations
Original progress reporting implemented in CB:49643 and it has some
issues, for example:

    size_t start_address = start;
    size_t end_address = len - start;

End address is anything but length minus start address.

    update_progress(flash,
                    FLASHROM_PROGRESS_READ,
                    /*current*/ start - start_address + to_read,
                    /*total*/ end_address);

Total should just be length if that's how current value is computed.

---

libflashrom needs to know total size ahead of time.
That's init_progress() and changed update_progress().

It also needs to store the last current value to be able to update it.
That's stage_progress in flashrom_flashctx.

Measuring accurately amount of data which will be read/erased/written
isn't easy because things can be skipped as optimizations. The next
patch in the chain aims to address this, there are TODO/FIXME
comments there.

---

CLI shares terminal with the rest of the code and has to maintain more
state to handle that reasonably well.

Similar to CB:64668, an effort is made to keep the progress on a
single line. Non-progress output is kept track of to know when
moving to a new line cannot be avoided.

---

A script to test the CLI:

\#!/bin/bash
t=${1:-rewW}
shift

if [[ $t =~ r ]]; then
    echo ">>> READ"
    ./flashrom -p dummy:emulate=W25Q128FV,freq=64mhz -r dump.rom --progress "$@"
    echo
fi

if [[ $t =~ e ]]; then
    echo ">>> ERASE"
    ./flashrom -p dummy:emulate=W25Q128FV,freq=64mhz -E --progress "$@"
    echo
fi

if [[ $t =~ w ]]; then
    echo ">>> WRITE (without erase)"
    dd if=/dev/zero of=zero.rom bs=1M count=16 2> /dev/null
    ./flashrom -p dummy:emulate=W25Q128FV,freq=64mhz -w zero.rom --progress "$@"
    echo
fi

if [[ $t =~ W ]]; then
    echo ">>> WRITE (with erase)"
    dd if=/dev/zero of=zero.rom bs=1M count=16 2> /dev/null
    dd if=/dev/random of=random.rom bs=1M count=16 2> /dev/null
    ./flashrom -p dummy:emulate=W25Q128FV,freq=64mhz,image=random.rom -w zero.rom --progress "$@"
    echo
fi

Co-developed-by: Anastasia Klimchuk <aklm@flashrom.org>
Co-developed-by: Sergii Dmytruk <sergii.dmytruk@3mdeb.com>
Change-Id: If1e40fc97f443c4f0c0501cef11cff1f3f84c051
Signed-off-by: Sergii Dmytruk <sergii.dmytruk@3mdeb.com>
Signed-off-by: Anastasia Klimchuk <aklm@flashrom.org>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/84102
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Anastasia Klimchuk <aklm@chromium.org>
2024-10-27 06:13:11 +00:00

748 lines
27 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2000 Ronald G. Minnich <rminnich@gmail.com>
* Copyright (C) 2005-2009 coresystems GmbH
* Copyright (C) 2006-2009 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __FLASH_H__
#define __FLASH_H__ 1
#include <inttypes.h>
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <stdarg.h>
#include <stdbool.h>
#if IS_WINDOWS
#include <windows.h>
#undef min
#undef max
#endif
#include "libflashrom.h"
#include "layout.h"
#include "writeprotect.h"
#define KiB (1024)
#define MiB (1024 * KiB)
#define BIT(x) (1<<(x))
/* Assumes `n` and `a` are at most 64-bit wide (to avoid typeof() operator). */
#define ALIGN_DOWN(n, a) ((n) & ~((uint64_t)(a) - 1))
#define ERROR_PTR ((void*)-1)
/* Error codes */
#define ERROR_OOM -100
#define TIMEOUT_ERROR -101
/* TODO: check using code for correct usage of types */
typedef uintptr_t chipaddr;
#define PRIxPTR_WIDTH ((int)(sizeof(uintptr_t)*2))
int register_shutdown(int (*function) (void *data), void *data);
struct registered_master;
void *master_map_flash_region(const struct registered_master *mast,
const char *descr, uintptr_t phys_addr, size_t len);
void master_unmap_flash_region(const struct registered_master *mast,
void *virt_addr, size_t len);
/* NOTE: flashctx is not used in default_delay. In this case, a context should be NULL. */
void programmer_delay(const struct flashrom_flashctx *flash, unsigned int usecs);
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
enum chipbustype {
BUS_NONE = 0,
BUS_PARALLEL = 1 << 0,
BUS_LPC = 1 << 1,
BUS_FWH = 1 << 2,
BUS_SPI = 1 << 3,
BUS_PROG = 1 << 4,
BUS_NONSPI = BUS_PARALLEL | BUS_LPC | BUS_FWH,
};
/*
* The following enum defines possible write granularities of flash chips. These tend to reflect the properties
* of the actual hardware not necessarily the write function(s) defined by the respective struct flashchip.
* The latter might (and should) be more precisely specified, e.g. they might bail out early if their execution
* would result in undefined chip contents.
*/
enum write_granularity {
/* We assume 256 byte granularity by default. */
WRITE_GRAN_256BYTES = 0,/* If less than 256 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_1BIT, /* Each bit can be cleared individually. */
WRITE_GRAN_1BYTE, /* A byte can be written once. Further writes to an already written byte cause
* its contents to be either undefined or to stay unchanged. */
WRITE_GRAN_128BYTES, /* If less than 128 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_264BYTES, /* If less than 264 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_512BYTES, /* If less than 512 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_528BYTES, /* If less than 528 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_1024BYTES, /* If less than 1024 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_1056BYTES, /* If less than 1056 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_1BYTE_IMPLICIT_ERASE, /* EEPROMs and other chips with implicit erase and 1-byte writes. */
};
/*
* How many different contiguous runs of erase blocks with one size each do
* we have for a given erase function?
*/
#define NUM_ERASEREGIONS 5
/*
* How many different erase functions do we have per chip?
* Macronix MX25L25635F has 8 different functions.
*/
#define NUM_ERASEFUNCTIONS 8
#define MAX_CHIP_RESTORE_FUNCTIONS 4
/* Feature bits used for non-SPI only */
#define FEATURE_REGISTERMAP (1 << 0)
#define FEATURE_LONG_RESET (0 << 4)
#define FEATURE_SHORT_RESET (1 << 4)
#define FEATURE_EITHER_RESET FEATURE_LONG_RESET
#define FEATURE_RESET_MASK (FEATURE_LONG_RESET | FEATURE_SHORT_RESET)
#define FEATURE_ADDR_FULL (0 << 2)
#define FEATURE_ADDR_MASK (3 << 2)
#define FEATURE_ADDR_2AA (1 << 2)
#define FEATURE_ADDR_AAA (2 << 2)
#define FEATURE_ADDR_SHIFTED (1 << 5)
/* Feature bits used for SPI only */
#define FEATURE_WRSR_EWSR (1 << 6)
#define FEATURE_WRSR_WREN (1 << 7)
#define FEATURE_WRSR_EITHER (FEATURE_WRSR_EWSR | FEATURE_WRSR_WREN)
#define FEATURE_OTP (1 << 8)
#define FEATURE_QPI (1 << 9)
#define FEATURE_4BA_ENTER (1 << 10) /**< Can enter/exit 4BA mode with instructions 0xb7/0xe9 w/o WREN */
#define FEATURE_4BA_ENTER_WREN (1 << 11) /**< Can enter/exit 4BA mode with instructions 0xb7/0xe9 after WREN */
#define FEATURE_4BA_ENTER_EAR7 (1 << 12) /**< Can enter/exit 4BA mode by setting bit7 of the ext addr reg */
#define FEATURE_4BA_EAR_C5C8 (1 << 13) /**< Regular 3-byte operations can be used by writing the most
significant address byte into an extended address register
(using 0xc5/0xc8 instructions). */
#define FEATURE_4BA_EAR_1716 (1 << 14) /**< Like FEATURE_4BA_EAR_C5C8 but with 0x17/0x16 instructions. */
#define FEATURE_4BA_READ (1 << 15) /**< Native 4BA read instruction (0x13) is supported. */
#define FEATURE_4BA_FAST_READ (1 << 16) /**< Native 4BA fast read instruction (0x0c) is supported. */
#define FEATURE_4BA_WRITE (1 << 17) /**< Native 4BA byte program (0x12) is supported. */
/* 4BA Shorthands */
#define FEATURE_4BA_EAR_ANY (FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_EAR_1716)
#define FEATURE_4BA_NATIVE (FEATURE_4BA_READ | FEATURE_4BA_FAST_READ | FEATURE_4BA_WRITE)
#define FEATURE_4BA (FEATURE_4BA_ENTER | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE)
#define FEATURE_4BA_WREN (FEATURE_4BA_ENTER_WREN | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE)
#define FEATURE_4BA_EAR7 (FEATURE_4BA_ENTER_EAR7 | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE)
/*
* Most flash chips are erased to ones and programmed to zeros. However, some
* other flash chips, such as the ENE KB9012 internal flash, work the opposite way.
*/
#define FEATURE_ERASED_ZERO (1 << 18)
/*
* Feature indicates that the chip does not require erase before writing:
* write operations can set any bit to any value without first doing an erase,
* but bulk erase operations may still be supported.
*
* EEPROMs usually behave this way (compare to Flash, which requires erase),
* for example the ST M95M02.
*/
#define FEATURE_NO_ERASE (1 << 19)
#define FEATURE_WRSR_EXT2 (1 << 20)
#define FEATURE_WRSR2 (1 << 21)
#define FEATURE_WRSR_EXT3 ((1 << 22) | FEATURE_WRSR_EXT2)
#define FEATURE_WRSR3 (1 << 23)
/*
* Whether chip has security register (RDSCUR/WRSCUR commands).
* Not to be confused with "secure registers" of OTP.
*/
#define FEATURE_SCUR (1 << 24)
/* Whether chip has configuration register (RDCR/WRSR_EXT2 commands) */
#define FEATURE_CFGR (1 << 25)
#define ERASED_VALUE(flash) (((flash)->chip->feature_bits & FEATURE_ERASED_ZERO) ? 0x00 : 0xff)
#define UNERASED_VALUE(flash) (((flash)->chip->feature_bits & FEATURE_ERASED_ZERO) ? 0xff : 0x00)
enum test_state {
OK = 0,
NT = 1, /* Not tested */
BAD, /* Known to not work */
DEP, /* Support depends on configuration (e.g. Intel flash descriptor) */
NA, /* Not applicable (e.g. write support on ROM chips) */
};
#define TEST_UNTESTED (struct tested){ .probe = NT, .read = NT, .erase = NT, .write = NT, .wp = NT }
#define TEST_OK_PROBE (struct tested){ .probe = OK, .read = NT, .erase = NT, .write = NT, .wp = NT }
#define TEST_OK_PR (struct tested){ .probe = OK, .read = OK, .erase = NT, .write = NT, .wp = NT }
#define TEST_OK_PRE (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = NT, .wp = NT }
#define TEST_OK_PREW (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = OK, .wp = NT }
#define TEST_OK_PREWB (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = OK, .wp = OK }
#define TEST_BAD_PROBE (struct tested){ .probe = BAD, .read = NT, .erase = NT, .write = NT, .wp = NT }
#define TEST_BAD_PR (struct tested){ .probe = BAD, .read = BAD, .erase = NT, .write = NT, .wp = NT }
#define TEST_BAD_PRE (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = NT, .wp = NT }
#define TEST_BAD_PREW (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = BAD, .wp = NT }
#define TEST_BAD_PREWB (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = BAD, .wp = BAD }
struct flashrom_flashctx;
#define flashctx flashrom_flashctx /* TODO: Agree on a name and convert all occurrences. */
typedef int (erasefunc_t)(struct flashctx *flash, unsigned int addr, unsigned int blocklen);
enum flash_reg {
INVALID_REG = 0,
STATUS1,
STATUS2,
STATUS3,
SECURITY,
CONFIG,
MAX_REGISTERS
};
struct reg_bit_info {
/* Register containing the bit */
enum flash_reg reg;
/* Bit index within register */
uint8_t bit_index;
/*
* Writability of the bit. RW does not guarantee the bit will be
* writable, for example if status register protection is enabled.
*/
enum {
RO, /* Read only */
RW, /* Readable and writable */
OTP /* One-time programmable */
} writability;
};
struct wp_bits;
enum decode_range_func {
NO_DECODE_RANGE_FUNC = 0, /* 0 indicates no range decode function is set. */
DECODE_RANGE_SPI25 = 1,
DECODE_RANGE_SPI25_64K_BLOCK = 2,
DECODE_RANGE_SPI25_BIT_CMP = 3,
DECODE_RANGE_SPI25_2X_BLOCK = 4,
};
typedef void (decode_range_func_t)(size_t *start, size_t *len, const struct wp_bits *, size_t chip_len);
enum probe_func {
NO_PROBE_FUNC = 0, /* 0 indicates no probe function set. */
PROBE_JEDEC = 1,
PROBE_JEDEC_29GL,
PROBE_OPAQUE,
PROBE_EDI_KB9012,
PROBE_AT82802AB,
PROBE_W29EE011,
PROBE_EN29LV640B,
PROBE_SPI_AT25F,
PROBE_SPI_AT45DB,
PROBE_SPI_BIG_SPANSION,
PROBE_SPI_RDID,
PROBE_SPI_RDID4,
PROBE_SPI_REMS,
PROBE_SPI_RES1,
PROBE_SPI_RES2,
PROBE_SPI_SFDP,
PROBE_SPI_ST95,
};
enum write_func {
NO_WRITE_FUNC = 0, /* 0 indicates no write function set. */
WRITE_JEDEC = 1,
WRITE_JEDEC1,
WRITE_OPAQUE,
SPI_CHIP_WRITE1,
SPI_CHIP_WRITE256,
SPI_WRITE_AAI,
SPI_WRITE_AT45DB,
WRITE_28SF040,
WRITE_82802AB,
WRITE_EN29LV640B,
EDI_CHIP_WRITE,
#ifdef FLASHROM_TEST
TEST_WRITE_INJECTOR, /* special case must come last. */
#endif
};
typedef int (write_func_t)(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len);
#ifdef FLASHROM_TEST
extern write_func_t *g_test_write_injector;
#endif
enum read_func {
NO_READ_FUNC = 0, /* 0 indicates no read function set. */
SPI_CHIP_READ = 1,
READ_OPAQUE,
READ_MEMMAPPED,
EDI_CHIP_READ,
SPI_READ_AT45DB,
SPI_READ_AT45DB_E8,
#ifdef FLASHROM_TEST
TEST_READ_INJECTOR, /* special case must come last. */
#endif
};
typedef int (read_func_t)(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len);
int read_flash(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len);
#ifdef FLASHROM_TEST
extern read_func_t *g_test_read_injector;
#endif
enum block_erase_func {
NO_BLOCK_ERASE_FUNC = 0, /* 0 indicates no block erase function set. */
SPI_BLOCK_ERASE_EMULATION = 1,
SPI_BLOCK_ERASE_20,
SPI_BLOCK_ERASE_21,
SPI_BLOCK_ERASE_40,
SPI_BLOCK_ERASE_50,
SPI_BLOCK_ERASE_52,
SPI_BLOCK_ERASE_53,
SPI_BLOCK_ERASE_5C,
SPI_BLOCK_ERASE_60,
SPI_BLOCK_ERASE_62,
SPI_BLOCK_ERASE_81,
SPI_BLOCK_ERASE_C4,
SPI_BLOCK_ERASE_C7,
SPI_BLOCK_ERASE_D7,
SPI_BLOCK_ERASE_D8,
SPI_BLOCK_ERASE_DB,
SPI_BLOCK_ERASE_DC,
S25FL_BLOCK_ERASE,
S25FS_BLOCK_ERASE_D8,
JEDEC_SECTOR_ERASE,
JEDEC_BLOCK_ERASE,
JEDEC_CHIP_BLOCK_ERASE,
OPAQUE_ERASE,
SPI_ERASE_AT45CS_SECTOR,
SPI_ERASE_AT45DB_BLOCK,
SPI_ERASE_AT45DB_CHIP,
SPI_ERASE_AT45DB_PAGE,
SPI_ERASE_AT45DB_SECTOR,
ERASE_CHIP_28SF040,
ERASE_SECTOR_28SF040,
ERASE_BLOCK_82802AB,
ERASE_SECTOR_49LFXXXC,
STM50_SECTOR_ERASE,
EDI_CHIP_BLOCK_ERASE,
#ifdef FLASHROM_TEST
/* special cases must come last. */
TEST_ERASE_INJECTOR_1,
TEST_ERASE_INJECTOR_2,
TEST_ERASE_INJECTOR_3,
TEST_ERASE_INJECTOR_4,
TEST_ERASE_INJECTOR_5,
#endif
};
#ifdef FLASHROM_TEST
#define NUM_TEST_ERASE_INJECTORS 5
extern erasefunc_t *g_test_erase_injector[NUM_TEST_ERASE_INJECTORS];
#endif
enum blockprotect_func {
NO_BLOCKPROTECT_FUNC = 0, /* 0 indicates no unlock function set. */
SPI_DISABLE_BLOCKPROTECT,
SPI_DISABLE_BLOCKPROTECT_BP2_EP_SRWD,
SPI_DISABLE_BLOCKPROTECT_BP1_SRWD,
SPI_DISABLE_BLOCKPROTECT_BP2_SRWD,
SPI_DISABLE_BLOCKPROTECT_BP3_SRWD,
SPI_DISABLE_BLOCKPROTECT_BP4_SRWD,
SPI_DISABLE_BLOCKPROTECT_AT45DB,
SPI_DISABLE_BLOCKPROTECT_AT25F,
SPI_DISABLE_BLOCKPROTECT_AT25FS010,
SPI_DISABLE_BLOCKPROTECT_AT25FS040,
SPI_DISABLE_BLOCKPROTECT_AT25F512A,
SPI_DISABLE_BLOCKPROTECT_AT25F512B,
SPI_DISABLE_BLOCKPROTECT_AT2X_GLOBAL_UNPROTECT,
SPI_DISABLE_BLOCKPROTECT_AT2X_GLOBAL_UNPROTECT_SEC,
SPI_DISABLE_BLOCKPROTECT_SST26_GLOBAL_UNPROTECT,
SPI_DISABLE_BLOCKPROTECT_N25Q,
UNLOCK_REGSPACE2_BLOCK_ERASER_0,
UNLOCK_REGSPACE2_BLOCK_ERASER_1,
UNLOCK_REGSPACE2_UNIFORM_32K,
UNLOCK_REGSPACE2_UNIFORM_64K,
UNLOCK_28F004S5,
UNLOCK_LH28F008BJT,
UNLOCK_SST_FWHUB,
UNPROTECT_28SF040,
};
enum printlock_func {
NO_PRINTLOCK_FUNC,
PRINTLOCK_AT49F,
PRINTLOCK_REGSPACE2_BLOCK_ERASER_0,
PRINTLOCK_REGSPACE2_BLOCK_ERASER_1,
PRINTLOCK_SST_FWHUB,
PRINTLOCK_W39F010,
PRINTLOCK_W39L010,
PRINTLOCK_W39L020,
PRINTLOCK_W39L040,
PRINTLOCK_W39V040A,
PRINTLOCK_W39V040B,
PRINTLOCK_W39V040C,
PRINTLOCK_W39V040FA,
PRINTLOCK_W39V040FB,
PRINTLOCK_W39V040FC,
PRINTLOCK_W39V080A,
PRINTLOCK_W39V080FA,
PRINTLOCK_W39V080FA_DUAL,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25DF,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25DF_SEC,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25F,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25F4096,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25F512A,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25F512B,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25FS010,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25FS040,
SPI_PRETTYPRINT_STATUS_REGISTER_AT26DF081A,
SPI_PRETTYPRINT_STATUS_REGISTER_AT45DB,
SPI_PRETTYPRINT_STATUS_REGISTER_BP1_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_BP2_BPL,
SPI_PRETTYPRINT_STATUS_REGISTER_BP2_EP_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_BP2_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_BP2_TB_BPL,
SPI_PRETTYPRINT_STATUS_REGISTER_SRWD_SEC_TB_BP2_WELWIP,
SPI_PRETTYPRINT_STATUS_REGISTER_BP3_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_BP4_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_DEFAULT_WELWIP,
SPI_PRETTYPRINT_STATUS_REGISTER_EN25S_WP,
SPI_PRETTYPRINT_STATUS_REGISTER_N25Q,
SPI_PRETTYPRINT_STATUS_REGISTER_PLAIN,
SPI_PRETTYPRINT_STATUS_REGISTER_SST25,
SPI_PRETTYPRINT_STATUS_REGISTER_SST25VF016,
SPI_PRETTYPRINT_STATUS_REGISTER_SST25VF040B,
};
typedef int (printlockfunc_t)(struct flashctx *flash);
printlockfunc_t *lookup_printlock_func_ptr(struct flashctx *flash);
struct flashchip {
const char *vendor;
const char *name;
enum chipbustype bustype;
/*
* With 32bit manufacture_id and model_id we can cover IDs up to
* (including) the 4th bank of JEDEC JEP106W Standard Manufacturer's
* Identification code.
*/
uint32_t manufacture_id;
uint32_t model_id;
/* Total chip size in kilobytes */
unsigned int total_size;
/* Chip page size in bytes */
unsigned int page_size;
int feature_bits;
/* Indicate how well flashrom supports different operations of this flash chip. */
struct tested {
enum test_state probe;
enum test_state read;
enum test_state erase;
enum test_state write;
enum test_state wp;
} tested;
/*
* Group chips that have common command sets. This should ensure that
* no chip gets confused by a probing command for a very different class
* of chips.
*/
enum {
/* SPI25 is very common. Keep it at zero so we don't have
to specify it for each and every chip in the database.*/
SPI25 = 0,
SPI_EDI = 1,
} spi_cmd_set;
enum probe_func probe;
/* Delay after "enter/exit ID mode" commands in microseconds.
* NB: negative values have special meanings, see TIMING_* below.
*/
signed int probe_timing;
/*
* Erase blocks and associated erase function. Any chip erase function
* is stored as chip-sized virtual block together with said function.
* The logic for how to optimally select erase functions is in erasure_layout.c
*/
struct block_eraser {
struct eraseblock {
unsigned int size; /* Eraseblock size in bytes */
unsigned int count; /* Number of contiguous blocks with that size */
} eraseblocks[NUM_ERASEREGIONS];
/* a block_erase function should try to erase one block of size
* 'blocklen' at address 'blockaddr' and return 0 on success. */
enum block_erase_func block_erase;
} block_erasers[NUM_ERASEFUNCTIONS];
enum printlock_func printlock;
enum blockprotect_func unlock;
enum write_func write;
enum read_func read;
struct voltage {
uint16_t min;
uint16_t max;
} voltage;
enum write_granularity gran;
struct reg_bit_map {
/* Status register protection bit (SRP) */
struct reg_bit_info srp;
/* Status register lock bit (SRP) */
struct reg_bit_info srl;
/*
* Note: some datasheets refer to configuration bits that
* function like TB/SEC/CMP bits as BP bits (e.g. BP3 for a bit
* that functions like TB).
*
* As a convention, any config bit that functions like a
* TB/SEC/CMP bit should be assigned to the respective
* tb/sec/cmp field in this structure, even if the datasheet
* uses a different name.
*/
/* Block protection bits (BP) */
/* Extra element for terminator */
struct reg_bit_info bp[MAX_BP_BITS + 1];
/* Top/bottom protection bit (TB) */
struct reg_bit_info tb;
/* Sector/block protection bit (SEC) */
struct reg_bit_info sec;
/* Complement bit (CMP) */
struct reg_bit_info cmp;
/* Write Protect Selection (per sector protection when set) */
struct reg_bit_info wps;
} reg_bits;
/*
* Function that takes a set of WP config bits (e.g. BP, SEC, TB, etc)
* and determines what protection range they select.
*/
enum decode_range_func decode_range;
};
typedef int (*chip_restore_fn_cb_t)(struct flashctx *flash, void *data);
typedef int (blockprotect_func_t)(struct flashctx *flash);
blockprotect_func_t *lookup_blockprotect_func_ptr(const struct flashchip *const chip);
struct stage_progress {
size_t current;
size_t total;
};
struct flashrom_flashctx {
struct flashchip *chip;
/* FIXME: The memory mappings should be saved in a more structured way. */
/* The physical_* fields store the respective addresses in the physical address space of the CPU. */
uintptr_t physical_memory;
/* The virtual_* fields store where the respective physical address is mapped into flashrom's address
* space. A value equivalent to (chipaddr)ERROR_PTR indicates an invalid mapping (or none at all). */
chipaddr virtual_memory;
/* Some flash devices have an additional register space; semantics are like above. */
uintptr_t physical_registers;
chipaddr virtual_registers;
struct registered_master *mst;
const struct flashrom_layout *layout;
struct flashrom_layout *default_layout;
struct {
bool force;
bool force_boardmismatch;
bool verify_after_write;
bool verify_whole_chip;
bool skip_unreadable_regions;
bool skip_unwritable_regions;
} flags;
/* We cache the state of the extended address register (highest byte
* of a 4BA for 3BA instructions) and the state of the 4BA mode here.
* If possible, we enter 4BA mode early. If that fails, we make use
* of the extended address register.
*/
int address_high_byte;
bool in_4ba_mode;
int chip_restore_fn_count;
struct chip_restore_func_data {
chip_restore_fn_cb_t func;
void *data;
} chip_restore_fn[MAX_CHIP_RESTORE_FUNCTIONS];
/* Progress reporting */
flashrom_progress_callback *progress_callback;
struct flashrom_progress *progress_state;
struct stage_progress stage_progress[FLASHROM_PROGRESS_NR];
};
/* Timing used in probe routines. ZERO is -2 to differentiate between an unset
* field and zero delay.
*
* SPI devices will always have zero delay and ignore this field.
*/
#define TIMING_FIXME -1
/* this is intentionally same value as fixme */
#define TIMING_IGNORED -1
#define TIMING_ZERO -2
extern const struct flashchip flashchips[];
extern const unsigned int flashchips_size;
/* parallel.c */
void chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr);
void chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr);
void chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr);
void chip_writen(const struct flashctx *flash, const uint8_t *buf, chipaddr addr, size_t len);
uint8_t chip_readb(const struct flashctx *flash, const chipaddr addr);
uint16_t chip_readw(const struct flashctx *flash, const chipaddr addr);
uint32_t chip_readl(const struct flashctx *flash, const chipaddr addr);
void chip_readn(const struct flashctx *flash, uint8_t *buf, const chipaddr addr, size_t len);
/* print.c */
int print_supported(void);
/* helpers.c */
uint32_t address_to_bits(uint32_t addr);
unsigned int bitcount(unsigned long a);
#undef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#undef MAX
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int max(int a, int b);
int min(int a, int b);
char *strcat_realloc(char *dest, const char *src);
void tolower_string(char *str);
uint8_t reverse_byte(uint8_t x);
void reverse_bytes(uint8_t *dst, const uint8_t *src, size_t length);
#ifdef __MINGW32__
char* strtok_r(char *str, const char *delim, char **nextp);
char *strndup(const char *str, size_t size);
#endif
#if defined(__DJGPP__) || (!defined(__LIBPAYLOAD__) && !defined(HAVE_STRNLEN))
size_t strnlen(const char *str, size_t n);
#endif
/* flashrom.c */
extern const char flashrom_version[];
char *flashbuses_to_text(enum chipbustype bustype);
int map_flash(struct flashctx *flash);
void unmap_flash(struct flashctx *flash);
int read_memmapped(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len);
int erase_flash(struct flashctx *flash);
int probe_flash(struct registered_master *mst, int startchip, struct flashctx *flash, int force, const char *const chip_to_probe);
int verify_range(struct flashctx *flash, const uint8_t *cmpbuf, unsigned int start, unsigned int len);
void emergency_help_message(void);
void print_version(void);
void print_buildinfo(void);
void print_banner(void);
void list_programmers_linebreak(int startcol, int cols, int paren);
int selfcheck(void);
int read_buf_from_file(unsigned char *buf, unsigned long size, const char *filename);
int write_buf_to_file(const unsigned char *buf, unsigned long size, const char *filename);
int prepare_flash_access(struct flashctx *, bool read_it, bool write_it, bool erase_it, bool verify_it);
void finalize_flash_access(struct flashctx *);
int register_chip_restore(chip_restore_fn_cb_t func, struct flashctx *flash, void *data);
int check_block_eraser(const struct flashctx *flash, int k, int log);
unsigned int count_usable_erasers(const struct flashctx *flash);
int need_erase(const uint8_t *have, const uint8_t *want, unsigned int len, enum write_granularity gran, const uint8_t erased_value);
erasefunc_t *lookup_erase_func_ptr(const struct block_eraser *const eraser);
int check_erased_range(struct flashctx *flash, unsigned int start, unsigned int len);
unsigned int get_next_write(const uint8_t *have, const uint8_t *want, unsigned int len, unsigned int *first_start, enum write_granularity gran);
int write_flash(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len);
/* Something happened that shouldn't happen, but we can go on. */
#define ERROR_FLASHROM_NONFATAL 0x100
/* Something happened that shouldn't happen, we'll abort. */
#define ERROR_FLASHROM_FATAL -0xee
#define ERROR_FLASHROM_BUG -200
/* We reached one of the hardcoded limits of flashrom. This can be fixed by
* increasing the limit of a compile-time allocation or by switching to dynamic
* allocation.
* Note: If this warning is triggered, check first for runaway registrations.
*/
#define ERROR_FLASHROM_LIMIT -201
struct cli_progress {
unsigned int stage_pc[FLASHROM_PROGRESS_NR];
unsigned int visible_stages; /* Bitmask of stages with non-zero progress. */
bool stage_setup; /* Flag to know when to reset progress data. */
};
/* cli_common.c */
void print_chip_support_status(const struct flashchip *chip);
/* cli_output.c */
extern enum flashrom_log_level verbose_screen;
extern enum flashrom_log_level verbose_logfile;
int open_logfile(const char * const filename);
int close_logfile(void);
void start_logging(void);
int flashrom_print_cb(enum flashrom_log_level level, const char *fmt, va_list ap);
void flashrom_progress_cb(struct flashrom_flashctx *flashctx);
/* Let gcc and clang check for correct printf-style format strings. */
int print(enum flashrom_log_level level, const char *fmt, ...)
#ifdef __MINGW32__
# ifndef __MINGW_PRINTF_FORMAT
# define __MINGW_PRINTF_FORMAT gnu_printf
# endif
__attribute__((format(__MINGW_PRINTF_FORMAT, 2, 3)));
#else
__attribute__((format(printf, 2, 3)));
#endif
#define msg_gerr(...) print(FLASHROM_MSG_ERROR, __VA_ARGS__) /* general errors */
#define msg_perr(...) print(FLASHROM_MSG_ERROR, __VA_ARGS__) /* programmer errors */
#define msg_cerr(...) print(FLASHROM_MSG_ERROR, __VA_ARGS__) /* chip errors */
#define msg_gwarn(...) print(FLASHROM_MSG_WARN, __VA_ARGS__) /* general warnings */
#define msg_pwarn(...) print(FLASHROM_MSG_WARN, __VA_ARGS__) /* programmer warnings */
#define msg_cwarn(...) print(FLASHROM_MSG_WARN, __VA_ARGS__) /* chip warnings */
#define msg_ginfo(...) print(FLASHROM_MSG_INFO, __VA_ARGS__) /* general info */
#define msg_pinfo(...) print(FLASHROM_MSG_INFO, __VA_ARGS__) /* programmer info */
#define msg_cinfo(...) print(FLASHROM_MSG_INFO, __VA_ARGS__) /* chip info */
#define msg_gdbg(...) print(FLASHROM_MSG_DEBUG, __VA_ARGS__) /* general debug */
#define msg_pdbg(...) print(FLASHROM_MSG_DEBUG, __VA_ARGS__) /* programmer debug */
#define msg_cdbg(...) print(FLASHROM_MSG_DEBUG, __VA_ARGS__) /* chip debug */
#define msg_gdbg2(...) print(FLASHROM_MSG_DEBUG2, __VA_ARGS__) /* general debug2 */
#define msg_pdbg2(...) print(FLASHROM_MSG_DEBUG2, __VA_ARGS__) /* programmer debug2 */
#define msg_cdbg2(...) print(FLASHROM_MSG_DEBUG2, __VA_ARGS__) /* chip debug2 */
#define msg_gspew(...) print(FLASHROM_MSG_SPEW, __VA_ARGS__) /* general debug spew */
#define msg_pspew(...) print(FLASHROM_MSG_SPEW, __VA_ARGS__) /* programmer debug spew */
#define msg_cspew(...) print(FLASHROM_MSG_SPEW, __VA_ARGS__) /* chip debug spew */
void init_progress(struct flashctx *flash, enum flashrom_progress_stage stage, size_t total);
void update_progress(struct flashctx *flash, enum flashrom_progress_stage stage, size_t increment);
/* spi.c */
struct spi_command {
unsigned int writecnt;
unsigned int readcnt;
const unsigned char *writearr;
unsigned char *readarr;
};
#define NULL_SPI_CMD { 0, 0, NULL, NULL, }
int spi_send_command(const struct flashctx *flash, unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr);
int spi_send_multicommand(const struct flashctx *flash, struct spi_command *cmds);
enum chipbustype get_buses_supported(void);
#endif /* !__FLASH_H__ */