1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-27 07:02:34 +02:00
flashrom/raiden_debug_spi.c
Brian J. Nemec 7a88780e92 raiden_debug_spi.c: Clean up the USB SPI protocol
Perform some clean up the USB SPI protocol 1 prior to adding
protocol 2 to improve consistency and correct minor issues.

* Minor clean up the comments descriptor for the protocol.
  This adds the location of another relevant file, corrects the
  omission of one of the protocol modes, makes the direction
  of the packets explicit, and minor formatting changes.

* Fix typos in constants associated with the retry mechanism.

* Clean declarations to match the EC code formats.

* Updates the error message formatting so protocol V1 closely
  matches the V2 protocol for consistency.

* Minor changes to the structure, moving validation of the
  arguments earlier in the transfer. Overall to keep V1 and
  V2 closer aligned and reduce future changes in the V1 code.

BUG=b:139058552
BRANCH=none
TEST=Builds

Signed-off-by: Brian J. Nemec <bnemec@chromium.com>
Change-Id: I17e62dabee2724eecf8d5a1a7827f06f0c7514df
Reviewed-on: https://review.coreboot.org/c/flashrom/+/41597
Reviewed-by: Edward O'Callaghan <quasisec@chromium.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2020-07-20 04:48:10 +00:00

685 lines
20 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright 2014, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*/
/*
* This SPI flash programming interface is designed to talk to a Chromium OS
* device over a Raiden USB connection. The USB connection is routed to a
* microcontroller running an image compiled from:
*
* https://chromium.googlesource.com/chromiumos/platform/ec
*
* The protocol for the USB-SPI bridge is implemented in the following files
* in that repository:
*
* chip/stm32/usb_spi.h
* chip/stm32/usb_spi.c
*
* bInterfaceProtocol determines which protocol is used by the USB SPI device.
*
*
* USB SPI Version 1:
*
* SPI transactions of up to 62B in each direction with every command having
* a response. The initial packet from host contains a 2B header indicating
* write and read counts with an optional payload length equal to the write
* count. The device will respond with a message that reports the 2B status
* code and an optional payload response length equal to read count.
*
*
* Message Packets:
*
* Command First Packet (Host to Device):
*
* USB SPI command, containing the number of bytes to write and read
* and a payload of bytes to write.
*
* +------------------+-----------------+------------------------+
* | write count : 1B | read count : 1B | write payload : <= 62B |
* +------------------+-----------------+------------------------+
*
* write count: 1 byte, zero based count of bytes to write
*
* read count: 1 byte, zero based count of bytes to read. Full duplex
* mode is enabled with UINT8_MAX
*
* write payload: Up to 62 bytes of data to write to SPI, the total
* length of all TX packets must match write count.
* Due to data alignment constraints, this must be an
* even number of bytes unless this is the final packet.
*
* Response Packet (Device to Host):
*
* USB SPI response, containing the status code and any bytes of the
* read payload.
*
* +-------------+-----------------------+
* | status : 2B | read payload : <= 62B |
* +-------------+-----------------------+
*
* status: 2 byte status
* 0x0000: Success
* 0x0001: SPI timeout
* 0x0002: Busy, try again
* This can happen if someone else has acquired the shared memory
* buffer that the SPI driver uses as /dev/null
* 0x0003: Write count invalid (over 62 bytes)
* 0x0004: Read count invalid (over 62 bytes)
* 0x0005: The SPI bridge is disabled.
* 0x8000: Unknown error mask
* The bottom 15 bits will contain the bottom 15 bits from the EC
* error code.
*
* read payload: Up to 62 bytes of data read from SPI, the total
* length of all RX packets must match read count
* unless an error status was returned. Due to data
* alignment constraints, this must be a even number
* of bytes unless this is the final packet.
*
*
* USB Error Codes:
*
* send_command return codes have the following format:
*
* 0x00000: Status code success.
* 0x00001-0x0FFFF: Error code returned by the USB SPI device.
* 0x10001-0x1FFFF: Error code returned by the USB SPI host.
* 0x20001-0x20063 Lower bits store the positive value representation
* of the libusb_error enum. See the libusb documentation:
* http://libusb.sourceforge.net/api-1.0/group__misc.html
*/
#include "programmer.h"
#include "spi.h"
#include "usb_device.h"
#include <libusb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
/* FIXME: Add some programmer IDs here */
const struct dev_entry devs_raiden[] = {
{0},
};
#define GOOGLE_VID (0x18D1)
#define GOOGLE_RAIDEN_SPI_SUBCLASS (0x51)
enum {
GOOGLE_RAIDEN_SPI_PROTOCOL_V1 = 0x01,
GOOGLE_RAIDEN_SPI_PROTOCOL_V2 = 0x02,
};
enum usb_spi_error {
USB_SPI_SUCCESS = 0x0000,
USB_SPI_TIMEOUT = 0x0001,
USB_SPI_BUSY = 0x0002,
USB_SPI_WRITE_COUNT_INVALID = 0x0003,
USB_SPI_READ_COUNT_INVALID = 0x0004,
USB_SPI_DISABLED = 0x0005,
USB_SPI_UNKNOWN_ERROR = 0x8000,
};
enum raiden_debug_spi_request {
RAIDEN_DEBUG_SPI_REQ_ENABLE = 0x0000,
RAIDEN_DEBUG_SPI_REQ_DISABLE = 0x0001,
RAIDEN_DEBUG_SPI_REQ_ENABLE_AP = 0x0002,
RAIDEN_DEBUG_SPI_REQ_ENABLE_EC = 0x0003,
};
#define PACKET_HEADER_SIZE (2)
#define USB_MAX_PACKET_SIZE (64)
#define PAYLOAD_SIZE_V1 (USB_MAX_PACKET_SIZE - PACKET_HEADER_SIZE)
/*
* Servo Micro has an error where it is capable of acknowledging USB packets
* without loading it into the USB endpoint buffers or triggering interrupts.
* See crbug.com/952494. Retry mechanisms have been implemented to recover
* from these rare failures allowing the process to continue.
*/
#define WRITE_RETRY_ATTEMPTS (3)
#define READ_RETRY_ATTEMPTS (3)
#define RETRY_INTERVAL_US (100 * 1000)
/*
* This timeout is so large because the Raiden SPI timeout is 800ms.
*/
#define TRANSFER_TIMEOUT_MS (200 + 800)
struct raiden_debug_spi_data {
struct usb_device *dev;
uint8_t in_ep;
uint8_t out_ep;
};
/*
* Version 1 protocol specific attributes
*/
struct usb_spi_command_v1 {
uint8_t write_count;
/* UINT8_MAX indicates full duplex mode on compliant devices. */
uint8_t read_count;
uint8_t data[PAYLOAD_SIZE_V1];
} __attribute__((packed));
struct usb_spi_response_v1 {
uint16_t status_code;
uint8_t data[PAYLOAD_SIZE_V1];
} __attribute__((packed));
/*
* This function will return true when an error code can potentially recover
* if we attempt to write SPI data to the device or read from it. We know
* that some conditions are not recoverable in the current state so allows us
* to bypass the retry logic and terminate early.
*/
static bool retry_recovery(int error_code)
{
if (error_code < 0x10000) {
/*
* Handle error codes returned from the device. USB_SPI_TIMEOUT,
* USB_SPI_BUSY, and USB_SPI_WRITE_COUNT_INVALID have been observed
* during transfer errors to the device and can be recovered.
*/
if (USB_SPI_READ_COUNT_INVALID <= error_code &&
error_code <= USB_SPI_DISABLED) {
return false;
}
} else if (usb_device_is_libusb_error(error_code)) {
/* Handle error codes returned from libusb. */
if (error_code == LIBUSB_ERROR(LIBUSB_ERROR_NO_DEVICE)) {
return false;
}
}
return true;
}
static const struct raiden_debug_spi_data *
get_raiden_data_from_context(const struct flashctx *flash)
{
return (const struct raiden_debug_spi_data *)flash->mst->spi.data;
}
/*
* Version 1 Protocol: Responsible for constructing the packet to start
* a USB SPI transfer. Write and read counts and payloads to write from
* the write_buffer are transmitted to the device.
*
* @returns Returns status code with 0 on success.
*/
static int write_command_v1(const struct flashctx *flash,
unsigned int write_count,
unsigned int read_count,
const unsigned char *write_buffer,
unsigned char *read_buffer)
{
int transferred;
int ret;
struct usb_spi_command_v1 command_packet;
const struct raiden_debug_spi_data * ctx_data = get_raiden_data_from_context(flash);
command_packet.write_count = write_count;
command_packet.read_count = read_count;
memcpy(command_packet.data, write_buffer, write_count);
ret = LIBUSB(libusb_bulk_transfer(ctx_data->dev->handle,
ctx_data->out_ep,
(void*)&command_packet,
write_count + PACKET_HEADER_SIZE,
&transferred,
TRANSFER_TIMEOUT_MS));
if (ret != 0) {
msg_perr("Raiden: OUT transfer failed\n"
" write_count = %d\n"
" read_count = %d\n",
write_count, read_count);
return ret;
}
if ((unsigned) transferred != write_count + PACKET_HEADER_SIZE) {
msg_perr("Raiden: Write failure (wrote %d, expected %d)\n",
transferred, write_count + PACKET_HEADER_SIZE);
return 0x10001;
}
return 0;
}
/*
* Version 1 Protocol: Responsible for reading the response of the USB SPI
* transfer. Status codes from the transfer and any read payload are copied
* to the read_buffer.
*
* @returns Returns status code with 0 on success.
*/
static int read_response_v1(const struct flashctx *flash,
unsigned int write_count,
unsigned int read_count,
const unsigned char *write_buffer,
unsigned char *read_buffer)
{
int transferred;
int ret;
struct usb_spi_response_v1 response_packet;
const struct raiden_debug_spi_data * ctx_data = get_raiden_data_from_context(flash);
ret = LIBUSB(libusb_bulk_transfer(ctx_data->dev->handle,
ctx_data->in_ep,
(void*)&response_packet,
read_count + PACKET_HEADER_SIZE,
&transferred,
TRANSFER_TIMEOUT_MS));
if (ret != 0) {
msg_perr("Raiden: IN transfer failed\n"
" write_count = %d\n"
" read_count = %d\n",
write_count, read_count);
return ret;
}
if ((unsigned) transferred != read_count + PACKET_HEADER_SIZE) {
msg_perr("Raiden: Read failure (read %d, expected %d)\n",
transferred, read_count + PACKET_HEADER_SIZE);
return 0x10002;
}
memcpy(read_buffer, response_packet.data, read_count);
return response_packet.status_code;
}
/*
* Version 1 Protocol: Sets up a USB SPI transfer, transmits data to the device,
* reads the status code and any payload from the device. This will also handle
* recovery if an error has occurred.
*
* @param flash Flash context storing SPI capabilities and USB device
* information.
* @param write_count Number of bytes to write
* @param read_count Number of bytes to read
* @param write_buffer Address of write buffer
* @param read_buffer Address of buffer to store read data
*
* @returns Returns status code with 0 on success.
*/
static int send_command_v1(const struct flashctx *flash,
unsigned int write_count,
unsigned int read_count,
const unsigned char *write_buffer,
unsigned char *read_buffer)
{
int status = -1;
if (write_count > PAYLOAD_SIZE_V1) {
msg_perr("Raiden: Invalid write count\n"
" write count = %u\n"
" max write = %d\n",
write_count, PAYLOAD_SIZE_V1);
return SPI_INVALID_LENGTH;
}
if (read_count > PAYLOAD_SIZE_V1) {
msg_perr("Raiden: Invalid read count\n"
" read count = %d\n"
" max read = %d\n",
read_count, PAYLOAD_SIZE_V1);
return SPI_INVALID_LENGTH;
}
for (unsigned int write_attempt = 0; write_attempt < WRITE_RETRY_ATTEMPTS;
write_attempt++) {
status = write_command_v1(flash, write_count, read_count,
write_buffer, read_buffer);
if (status) {
/* Write operation failed. */
msg_perr("Raiden: Write command failed\n"
" write count = %u\n"
" read count = %u\n"
" write attempt = %u\n"
" status = 0x%05x\n",
write_count, read_count,
write_attempt + 1, status);
if (!retry_recovery(status)) {
/* Reattempting will not result in a recovery. */
return status;
}
programmer_delay(RETRY_INTERVAL_US);
continue;
}
for (unsigned int read_attempt = 0; read_attempt < READ_RETRY_ATTEMPTS;
read_attempt++) {
status = read_response_v1(flash, write_count, read_count,
write_buffer, read_buffer);
if (status) {
/* Read operation failed. */
msg_perr("Raiden: Read response failed\n"
" write count = %u\n"
" read count = %u\n"
" write attempt = %u\n"
" read attempt = %u\n"
" status = 0x%05x\n",
write_count, read_count,
write_attempt + 1, read_attempt + 1, status);
if (!retry_recovery(status)) {
/* Reattempting will not result in a recovery. */
return status;
}
programmer_delay(RETRY_INTERVAL_US);
} else {
/* We were successful at performing the SPI transfer. */
return status;
}
}
}
return status;
}
/*
* Unfortunately there doesn't seem to be a way to specify the maximum number
* of bytes that your SPI device can read/write, these values are the maximum
* data chunk size that flashrom will package up with an additional five bytes
* of command for the flash device, resulting in a 62 byte packet, that we then
* add two bytes to in either direction, making our way up to the 64 byte
* maximum USB packet size for the device.
*
* The largest command that flashrom generates is the byte program command, so
* we use that command header maximum size here.
*/
#define MAX_DATA_SIZE (PAYLOAD_SIZE_V1 - JEDEC_BYTE_PROGRAM_OUTSIZE)
static struct spi_master spi_master_raiden_debug = {
.features = SPI_MASTER_4BA,
.max_data_read = MAX_DATA_SIZE,
.max_data_write = MAX_DATA_SIZE,
.command = send_command_v1,
.multicommand = default_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
.write_aai = default_spi_write_aai,
};
static int match_endpoint(struct libusb_endpoint_descriptor const *descriptor,
enum libusb_endpoint_direction direction)
{
return (((descriptor->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
direction) &&
((descriptor->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) ==
LIBUSB_TRANSFER_TYPE_BULK));
}
static int find_endpoints(struct usb_device *dev, uint8_t *in_ep, uint8_t *out_ep)
{
int i;
int in_count = 0;
int out_count = 0;
for (i = 0; i < dev->interface_descriptor->bNumEndpoints; i++) {
struct libusb_endpoint_descriptor const *endpoint =
&dev->interface_descriptor->endpoint[i];
if (match_endpoint(endpoint, LIBUSB_ENDPOINT_IN)) {
in_count++;
*in_ep = endpoint->bEndpointAddress;
} else if (match_endpoint(endpoint, LIBUSB_ENDPOINT_OUT)) {
out_count++;
*out_ep = endpoint->bEndpointAddress;
}
}
if (in_count != 1 || out_count != 1) {
msg_perr("Raiden: Failed to find one IN and one OUT endpoint\n"
" found %d IN and %d OUT endpoints\n",
in_count,
out_count);
return 1;
}
msg_pdbg("Raiden: Found IN endpoint = 0x%02x\n", *in_ep);
msg_pdbg("Raiden: Found OUT endpoint = 0x%02x\n", *out_ep);
return 0;
}
static int raiden_debug_spi_shutdown(void * data)
{
struct raiden_debug_spi_data * ctx_data =
(struct raiden_debug_spi_data *)data;
int ret = LIBUSB(libusb_control_transfer(
ctx_data->dev->handle,
LIBUSB_ENDPOINT_OUT |
LIBUSB_REQUEST_TYPE_VENDOR |
LIBUSB_RECIPIENT_INTERFACE,
RAIDEN_DEBUG_SPI_REQ_DISABLE,
0,
ctx_data->dev->interface_descriptor->bInterfaceNumber,
NULL,
0,
TRANSFER_TIMEOUT_MS));
if (ret != 0) {
msg_perr("Raiden: Failed to disable SPI bridge\n");
return ret;
}
usb_device_free(ctx_data->dev);
libusb_exit(NULL);
free(ctx_data);
return 0;
}
static int get_target(void)
{
int request_enable = RAIDEN_DEBUG_SPI_REQ_ENABLE;
char *target_str = extract_programmer_param("target");
if (target_str) {
if (!strcasecmp(target_str, "ap"))
request_enable = RAIDEN_DEBUG_SPI_REQ_ENABLE_AP;
else if (!strcasecmp(target_str, "ec"))
request_enable = RAIDEN_DEBUG_SPI_REQ_ENABLE_EC;
else {
msg_perr("Invalid target: %s\n", target_str);
request_enable = -1;
}
}
free(target_str);
return request_enable;
}
static void free_dev_list(struct usb_device **dev_lst)
{
struct usb_device *dev = *dev_lst;
/* free devices we don't care about */
dev = dev->next;
while (dev)
dev = usb_device_free(dev);
}
int raiden_debug_spi_init(void)
{
struct usb_match match;
char *serial = extract_programmer_param("serial");
struct usb_device *current;
struct usb_device *device = NULL;
int found = 0;
int ret;
int request_enable = get_target();
if (request_enable < 0) {
free(serial);
return 1;
}
usb_match_init(&match);
usb_match_value_default(&match.vid, GOOGLE_VID);
usb_match_value_default(&match.class, LIBUSB_CLASS_VENDOR_SPEC);
usb_match_value_default(&match.subclass, GOOGLE_RAIDEN_SPI_SUBCLASS);
usb_match_value_default(&match.protocol, GOOGLE_RAIDEN_SPI_PROTOCOL_V1);
ret = LIBUSB(libusb_init(NULL));
if (ret != 0) {
msg_perr("Raiden: libusb_init failed\n");
free(serial);
return ret;
}
ret = usb_device_find(&match, &current);
if (ret != 0) {
msg_perr("Raiden: Failed to find devices\n");
free(serial);
return ret;
}
uint8_t in_endpoint = 0;
uint8_t out_endpoint = 0;
while (current) {
device = current;
if (find_endpoints(device, &in_endpoint, &out_endpoint)) {
msg_pdbg("Raiden: Failed to find valid endpoints on device");
usb_device_show(" ", current);
goto loop_end;
}
if (usb_device_claim(device)) {
msg_pdbg("Raiden: Failed to claim USB device");
usb_device_show(" ", current);
goto loop_end;
}
if (!serial) {
found = 1;
goto loop_end;
} else {
unsigned char dev_serial[32];
struct libusb_device_descriptor descriptor;
int rc;
memset(dev_serial, 0, sizeof(dev_serial));
if (libusb_get_device_descriptor(device->device, &descriptor)) {
msg_pdbg("USB: Failed to get device descriptor.\n");
goto loop_end;
}
rc = libusb_get_string_descriptor_ascii(device->handle,
descriptor.iSerialNumber,
dev_serial,
sizeof(dev_serial));
if (rc < 0) {
LIBUSB(rc);
} else {
if (strcmp(serial, (char *)dev_serial)) {
msg_pdbg("Raiden: Serial number %s did not match device", serial);
usb_device_show(" ", current);
} else {
msg_pinfo("Raiden: Serial number %s matched device", serial);
usb_device_show(" ", current);
found = 1;
}
}
}
loop_end:
if (found)
break;
else
current = usb_device_free(current);
}
if (!device || !found) {
msg_perr("Raiden: No usable device found.\n");
free(serial);
return 1;
}
free_dev_list(&current);
ret = LIBUSB(libusb_control_transfer(
device->handle,
LIBUSB_ENDPOINT_OUT |
LIBUSB_REQUEST_TYPE_VENDOR |
LIBUSB_RECIPIENT_INTERFACE,
request_enable,
0,
device->interface_descriptor->bInterfaceNumber,
NULL,
0,
TRANSFER_TIMEOUT_MS));
if (ret != 0) {
msg_perr("Raiden: Failed to enable SPI bridge\n");
return ret;
}
/*
* Allow for power to settle on the AP and EC flash devices.
* Load switches can have a 1-3 ms turn on time, and SPI flash devices
* can require up to 10 ms from power on to the first write.
*/
if ((request_enable == RAIDEN_DEBUG_SPI_REQ_ENABLE_AP) ||
(request_enable == RAIDEN_DEBUG_SPI_REQ_ENABLE_EC))
usleep(50 * 1000);
struct raiden_debug_spi_data *data = calloc(1, sizeof(struct raiden_debug_spi_data));
if (!data) {
msg_perr("Unable to allocate space for extra SPI master data.\n");
return SPI_GENERIC_ERROR;
}
data->dev = device;
data->in_ep = in_endpoint;
data->out_ep = out_endpoint;
spi_master_raiden_debug.data = data;
register_spi_master(&spi_master_raiden_debug);
register_shutdown(raiden_debug_spi_shutdown, data);
return 0;
}