mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-27 07:02:34 +02:00

29GL chips use a new 3-Byte device ID probing function at addresses 0x01, 0x0E, 0x0F. Flash chip families supported by this method include... - EON EN29GL - Gigadevice GD29GL (if they really exist) - ISSI (PMC) IS29GL - Macronix MX29GL (+MX68GL1G0F) - Spansion S29GL (+S70GL02G) - Winbond W29GL This patch adds respective flash chip definitions for chips up to 16 MB from Eon, ISSI, Macronix and Winbond. Bigger chips as well as those from Gigadevice and Spansion are left out. Corresponding to flashrom svn r1835. Signed-off-by: Stefan Tauner <stefan.tauner@alumni.tuwien.ac.at> Acked-by: Stefan Tauner <stefan.tauner@alumni.tuwien.ac.at>
745 lines
22 KiB
C
745 lines
22 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2000 Silicon Integrated System Corporation
|
|
* Copyright (C) 2006 Giampiero Giancipoli <gianci@email.it>
|
|
* Copyright (C) 2006 coresystems GmbH <info@coresystems.de>
|
|
* Copyright (C) 2007, 2011 Carl-Daniel Hailfinger
|
|
* Copyright (C) 2009 Sean Nelson <audiohacked@gmail.com>
|
|
* Copyright (C) 2014 Stefan Tauner
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "flash.h"
|
|
#include "chipdrivers.h"
|
|
|
|
#define MAX_REFLASH_TRIES 0x10
|
|
#define MASK_FULL 0xffff
|
|
#define MASK_2AA 0x7ff
|
|
#define MASK_AAA 0xfff
|
|
|
|
/* Check one byte for odd parity */
|
|
uint8_t oddparity(uint8_t val)
|
|
{
|
|
val = (val ^ (val >> 4)) & 0xf;
|
|
val = (val ^ (val >> 2)) & 0x3;
|
|
return (val ^ (val >> 1)) & 0x1;
|
|
}
|
|
|
|
static void toggle_ready_jedec_common(const struct flashctx *flash, chipaddr dst, unsigned int delay)
|
|
{
|
|
unsigned int i = 0;
|
|
uint8_t tmp1, tmp2;
|
|
|
|
tmp1 = chip_readb(flash, dst) & 0x40;
|
|
|
|
while (i++ < 0xFFFFFFF) {
|
|
if (delay)
|
|
programmer_delay(delay);
|
|
tmp2 = chip_readb(flash, dst) & 0x40;
|
|
if (tmp1 == tmp2) {
|
|
break;
|
|
}
|
|
tmp1 = tmp2;
|
|
}
|
|
if (i > 0x100000)
|
|
msg_cdbg("%s: excessive loops, i=0x%x\n", __func__, i);
|
|
}
|
|
|
|
void toggle_ready_jedec(const struct flashctx *flash, chipaddr dst)
|
|
{
|
|
toggle_ready_jedec_common(flash, dst, 0);
|
|
}
|
|
|
|
/* Some chips require a minimum delay between toggle bit reads.
|
|
* The Winbond W39V040C wants 50 ms between reads on sector erase toggle,
|
|
* but experiments show that 2 ms are already enough. Pick a safety factor
|
|
* of 4 and use an 8 ms delay.
|
|
* Given that erase is slow on all chips, it is recommended to use
|
|
* toggle_ready_jedec_slow in erase functions.
|
|
*/
|
|
static void toggle_ready_jedec_slow(const struct flashctx *flash, chipaddr dst)
|
|
{
|
|
toggle_ready_jedec_common(flash, dst, 8 * 1000);
|
|
}
|
|
|
|
void data_polling_jedec(const struct flashctx *flash, chipaddr dst,
|
|
uint8_t data)
|
|
{
|
|
unsigned int i = 0;
|
|
uint8_t tmp;
|
|
|
|
data &= 0x80;
|
|
|
|
while (i++ < 0xFFFFFFF) {
|
|
tmp = chip_readb(flash, dst) & 0x80;
|
|
if (tmp == data) {
|
|
break;
|
|
}
|
|
}
|
|
if (i > 0x100000)
|
|
msg_cdbg("%s: excessive loops, i=0x%x\n", __func__, i);
|
|
}
|
|
|
|
static unsigned int getaddrmask(const struct flashchip *chip)
|
|
{
|
|
switch (chip->feature_bits & FEATURE_ADDR_MASK) {
|
|
case FEATURE_ADDR_FULL:
|
|
return MASK_FULL;
|
|
break;
|
|
case FEATURE_ADDR_2AA:
|
|
return MASK_2AA;
|
|
break;
|
|
case FEATURE_ADDR_AAA:
|
|
return MASK_AAA;
|
|
break;
|
|
default:
|
|
msg_cerr("%s called with unknown mask\n", __func__);
|
|
return 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void start_program_jedec_common(const struct flashctx *flash, unsigned int mask)
|
|
{
|
|
chipaddr bios = flash->virtual_memory;
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
chip_writeb(flash, 0xA0, bios + (0x5555 & mask));
|
|
}
|
|
|
|
int probe_jedec_29gl(struct flashctx *flash)
|
|
{
|
|
unsigned int mask = getaddrmask(flash->chip);
|
|
chipaddr bios = flash->virtual_memory;
|
|
const struct flashchip *chip = flash->chip;
|
|
|
|
/* Reset chip to a clean slate */
|
|
chip_writeb(flash, 0xF0, bios + (0x5555 & mask));
|
|
|
|
/* Issue JEDEC Product ID Entry command */
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
chip_writeb(flash, 0x90, bios + (0x5555 & mask));
|
|
|
|
/* Read product ID */
|
|
// FIXME: Continuation loop, second byte is at word 0x100/byte 0x200
|
|
uint32_t man_id = chip_readb(flash, bios + 0x00);
|
|
uint32_t dev_id = (chip_readb(flash, bios + 0x01) << 16) |
|
|
(chip_readb(flash, bios + 0x0E) << 8) |
|
|
(chip_readb(flash, bios + 0x0F) << 0);
|
|
|
|
/* Issue JEDEC Product ID Exit command */
|
|
chip_writeb(flash, 0xF0, bios + (0x5555 & mask));
|
|
|
|
msg_cdbg("%s: man_id 0x%02x, dev_id 0x%06x", __func__, man_id, dev_id);
|
|
if (!oddparity(man_id))
|
|
msg_cdbg(", man_id parity violation");
|
|
|
|
/* Read the product ID location again. We should now see normal flash contents. */
|
|
uint32_t flashcontent1 = chip_readb(flash, bios + 0x00); // FIXME: Continuation loop
|
|
uint32_t flashcontent2 = (chip_readb(flash, bios + 0x01) << 16) |
|
|
(chip_readb(flash, bios + 0x0E) << 8) |
|
|
(chip_readb(flash, bios + 0x0F) << 0);
|
|
|
|
if (man_id == flashcontent1)
|
|
msg_cdbg(", man_id seems to be normal flash content");
|
|
if (dev_id == flashcontent2)
|
|
msg_cdbg(", dev_id seems to be normal flash content");
|
|
|
|
msg_cdbg("\n");
|
|
if (man_id != chip->manufacture_id || dev_id != chip->model_id)
|
|
return 0;
|
|
|
|
if (chip->feature_bits & FEATURE_REGISTERMAP)
|
|
map_flash_registers(flash);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int probe_jedec_common(struct flashctx *flash, unsigned int mask)
|
|
{
|
|
chipaddr bios = flash->virtual_memory;
|
|
const struct flashchip *chip = flash->chip;
|
|
uint8_t id1, id2;
|
|
uint32_t largeid1, largeid2;
|
|
uint32_t flashcontent1, flashcontent2;
|
|
unsigned int probe_timing_enter, probe_timing_exit;
|
|
|
|
if (chip->probe_timing > 0)
|
|
probe_timing_enter = probe_timing_exit = chip->probe_timing;
|
|
else if (chip->probe_timing == TIMING_ZERO) { /* No delay. */
|
|
probe_timing_enter = probe_timing_exit = 0;
|
|
} else if (chip->probe_timing == TIMING_FIXME) { /* == _IGNORED */
|
|
msg_cdbg("Chip lacks correct probe timing information, "
|
|
"using default 10mS/40uS. ");
|
|
probe_timing_enter = 10000;
|
|
probe_timing_exit = 40;
|
|
} else {
|
|
msg_cerr("Chip has negative value in probe_timing, failing "
|
|
"without chip access\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Earlier probes might have been too fast for the chip to enter ID
|
|
* mode completely. Allow the chip to finish this before seeing a
|
|
* reset command.
|
|
*/
|
|
if (probe_timing_enter)
|
|
programmer_delay(probe_timing_enter);
|
|
/* Reset chip to a clean slate */
|
|
if ((chip->feature_bits & FEATURE_RESET_MASK) == FEATURE_LONG_RESET)
|
|
{
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
if (probe_timing_exit)
|
|
programmer_delay(10);
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
if (probe_timing_exit)
|
|
programmer_delay(10);
|
|
}
|
|
chip_writeb(flash, 0xF0, bios + (0x5555 & mask));
|
|
if (probe_timing_exit)
|
|
programmer_delay(probe_timing_exit);
|
|
|
|
/* Issue JEDEC Product ID Entry command */
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
if (probe_timing_enter)
|
|
programmer_delay(10);
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
if (probe_timing_enter)
|
|
programmer_delay(10);
|
|
chip_writeb(flash, 0x90, bios + (0x5555 & mask));
|
|
if (probe_timing_enter)
|
|
programmer_delay(probe_timing_enter);
|
|
|
|
/* Read product ID */
|
|
id1 = chip_readb(flash, bios);
|
|
id2 = chip_readb(flash, bios + 0x01);
|
|
largeid1 = id1;
|
|
largeid2 = id2;
|
|
|
|
/* Check if it is a continuation ID, this should be a while loop. */
|
|
if (id1 == 0x7F) {
|
|
largeid1 <<= 8;
|
|
id1 = chip_readb(flash, bios + 0x100);
|
|
largeid1 |= id1;
|
|
}
|
|
if (id2 == 0x7F) {
|
|
largeid2 <<= 8;
|
|
id2 = chip_readb(flash, bios + 0x101);
|
|
largeid2 |= id2;
|
|
}
|
|
|
|
/* Issue JEDEC Product ID Exit command */
|
|
if ((chip->feature_bits & FEATURE_RESET_MASK) == FEATURE_LONG_RESET)
|
|
{
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
if (probe_timing_exit)
|
|
programmer_delay(10);
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
if (probe_timing_exit)
|
|
programmer_delay(10);
|
|
}
|
|
chip_writeb(flash, 0xF0, bios + (0x5555 & mask));
|
|
if (probe_timing_exit)
|
|
programmer_delay(probe_timing_exit);
|
|
|
|
msg_cdbg("%s: id1 0x%02x, id2 0x%02x", __func__, largeid1, largeid2);
|
|
if (!oddparity(id1))
|
|
msg_cdbg(", id1 parity violation");
|
|
|
|
/* Read the product ID location again. We should now see normal flash contents. */
|
|
flashcontent1 = chip_readb(flash, bios);
|
|
flashcontent2 = chip_readb(flash, bios + 0x01);
|
|
|
|
/* Check if it is a continuation ID, this should be a while loop. */
|
|
if (flashcontent1 == 0x7F) {
|
|
flashcontent1 <<= 8;
|
|
flashcontent1 |= chip_readb(flash, bios + 0x100);
|
|
}
|
|
if (flashcontent2 == 0x7F) {
|
|
flashcontent2 <<= 8;
|
|
flashcontent2 |= chip_readb(flash, bios + 0x101);
|
|
}
|
|
|
|
if (largeid1 == flashcontent1)
|
|
msg_cdbg(", id1 is normal flash content");
|
|
if (largeid2 == flashcontent2)
|
|
msg_cdbg(", id2 is normal flash content");
|
|
|
|
msg_cdbg("\n");
|
|
if (largeid1 != chip->manufacture_id || largeid2 != chip->model_id)
|
|
return 0;
|
|
|
|
if (chip->feature_bits & FEATURE_REGISTERMAP)
|
|
map_flash_registers(flash);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int erase_sector_jedec_common(struct flashctx *flash, unsigned int page,
|
|
unsigned int pagesize, unsigned int mask)
|
|
{
|
|
chipaddr bios = flash->virtual_memory;
|
|
unsigned int delay_us = 0;
|
|
if(flash->chip->probe_timing != TIMING_ZERO)
|
|
delay_us = 10;
|
|
|
|
/* Issue the Sector Erase command */
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x80, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x30, bios + page);
|
|
programmer_delay(delay_us);
|
|
|
|
/* wait for Toggle bit ready */
|
|
toggle_ready_jedec_slow(flash, bios);
|
|
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
static int erase_block_jedec_common(struct flashctx *flash, unsigned int block,
|
|
unsigned int blocksize, unsigned int mask)
|
|
{
|
|
chipaddr bios = flash->virtual_memory;
|
|
unsigned int delay_us = 0;
|
|
if(flash->chip->probe_timing != TIMING_ZERO)
|
|
delay_us = 10;
|
|
|
|
/* Issue the Sector Erase command */
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x80, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x50, bios + block);
|
|
programmer_delay(delay_us);
|
|
|
|
/* wait for Toggle bit ready */
|
|
toggle_ready_jedec_slow(flash, bios);
|
|
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
static int erase_chip_jedec_common(struct flashctx *flash, unsigned int mask)
|
|
{
|
|
chipaddr bios = flash->virtual_memory;
|
|
unsigned int delay_us = 0;
|
|
if(flash->chip->probe_timing != TIMING_ZERO)
|
|
delay_us = 10;
|
|
|
|
/* Issue the JEDEC Chip Erase command */
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x80, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
|
|
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
|
|
programmer_delay(delay_us);
|
|
chip_writeb(flash, 0x10, bios + (0x5555 & mask));
|
|
programmer_delay(delay_us);
|
|
|
|
toggle_ready_jedec_slow(flash, bios);
|
|
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
static int write_byte_program_jedec_common(const struct flashctx *flash, const uint8_t *src,
|
|
chipaddr dst, unsigned int mask)
|
|
{
|
|
int tried = 0, failed = 0;
|
|
chipaddr bios = flash->virtual_memory;
|
|
|
|
/* If the data is 0xFF, don't program it and don't complain. */
|
|
if (*src == 0xFF) {
|
|
return 0;
|
|
}
|
|
|
|
retry:
|
|
/* Issue JEDEC Byte Program command */
|
|
start_program_jedec_common(flash, mask);
|
|
|
|
/* transfer data from source to destination */
|
|
chip_writeb(flash, *src, dst);
|
|
toggle_ready_jedec(flash, bios);
|
|
|
|
if (chip_readb(flash, dst) != *src && tried++ < MAX_REFLASH_TRIES) {
|
|
goto retry;
|
|
}
|
|
|
|
if (tried >= MAX_REFLASH_TRIES)
|
|
failed = 1;
|
|
|
|
return failed;
|
|
}
|
|
|
|
/* chunksize is 1 */
|
|
int write_jedec_1(struct flashctx *flash, const uint8_t *src, unsigned int start,
|
|
unsigned int len)
|
|
{
|
|
int i, failed = 0;
|
|
chipaddr dst = flash->virtual_memory + start;
|
|
chipaddr olddst;
|
|
unsigned int mask;
|
|
|
|
mask = getaddrmask(flash->chip);
|
|
|
|
olddst = dst;
|
|
for (i = 0; i < len; i++) {
|
|
if (write_byte_program_jedec_common(flash, src, dst, mask))
|
|
failed = 1;
|
|
dst++, src++;
|
|
}
|
|
if (failed)
|
|
msg_cerr(" writing sector at 0x%" PRIxPTR " failed!\n", olddst);
|
|
|
|
return failed;
|
|
}
|
|
|
|
static int write_page_write_jedec_common(struct flashctx *flash, const uint8_t *src,
|
|
unsigned int start, unsigned int page_size)
|
|
{
|
|
int i, tried = 0, failed;
|
|
const uint8_t *s = src;
|
|
chipaddr bios = flash->virtual_memory;
|
|
chipaddr dst = bios + start;
|
|
chipaddr d = dst;
|
|
unsigned int mask;
|
|
|
|
mask = getaddrmask(flash->chip);
|
|
|
|
retry:
|
|
/* Issue JEDEC Start Program command */
|
|
start_program_jedec_common(flash, mask);
|
|
|
|
/* transfer data from source to destination */
|
|
for (i = 0; i < page_size; i++) {
|
|
/* If the data is 0xFF, don't program it */
|
|
if (*src != 0xFF)
|
|
chip_writeb(flash, *src, dst);
|
|
dst++;
|
|
src++;
|
|
}
|
|
|
|
toggle_ready_jedec(flash, dst - 1);
|
|
|
|
dst = d;
|
|
src = s;
|
|
failed = verify_range(flash, src, start, page_size);
|
|
|
|
if (failed && tried++ < MAX_REFLASH_TRIES) {
|
|
msg_cerr("retrying.\n");
|
|
goto retry;
|
|
}
|
|
if (failed) {
|
|
msg_cerr(" page 0x%" PRIxPTR " failed!\n", (d - bios) / page_size);
|
|
}
|
|
return failed;
|
|
}
|
|
|
|
/* chunksize is page_size */
|
|
/*
|
|
* Write a part of the flash chip.
|
|
* FIXME: Use the chunk code from Michael Karcher instead.
|
|
* This function is a slightly modified copy of spi_write_chunked.
|
|
* Each page is written separately in chunks with a maximum size of chunksize.
|
|
*/
|
|
int write_jedec(struct flashctx *flash, const uint8_t *buf, unsigned int start,
|
|
int unsigned len)
|
|
{
|
|
unsigned int i, starthere, lenhere;
|
|
/* FIXME: page_size is the wrong variable. We need max_writechunk_size
|
|
* in struct flashctx to do this properly. All chips using
|
|
* write_jedec have page_size set to max_writechunk_size, so
|
|
* we're OK for now.
|
|
*/
|
|
unsigned int page_size = flash->chip->page_size;
|
|
|
|
/* Warning: This loop has a very unusual condition and body.
|
|
* The loop needs to go through each page with at least one affected
|
|
* byte. The lowest page number is (start / page_size) since that
|
|
* division rounds down. The highest page number we want is the page
|
|
* where the last byte of the range lives. That last byte has the
|
|
* address (start + len - 1), thus the highest page number is
|
|
* (start + len - 1) / page_size. Since we want to include that last
|
|
* page as well, the loop condition uses <=.
|
|
*/
|
|
for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
|
|
/* Byte position of the first byte in the range in this page. */
|
|
/* starthere is an offset to the base address of the chip. */
|
|
starthere = max(start, i * page_size);
|
|
/* Length of bytes in the range in this page. */
|
|
lenhere = min(start + len, (i + 1) * page_size) - starthere;
|
|
|
|
if (write_page_write_jedec_common(flash, buf + starthere - start, starthere, lenhere))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* erase chip with block_erase() prototype */
|
|
int erase_chip_block_jedec(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocksize)
|
|
{
|
|
unsigned int mask;
|
|
|
|
mask = getaddrmask(flash->chip);
|
|
if ((addr != 0) || (blocksize != flash->chip->total_size * 1024)) {
|
|
msg_cerr("%s called with incorrect arguments\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
return erase_chip_jedec_common(flash, mask);
|
|
}
|
|
|
|
int probe_jedec(struct flashctx *flash)
|
|
{
|
|
unsigned int mask;
|
|
|
|
mask = getaddrmask(flash->chip);
|
|
return probe_jedec_common(flash, mask);
|
|
}
|
|
|
|
int erase_sector_jedec(struct flashctx *flash, unsigned int page,
|
|
unsigned int size)
|
|
{
|
|
unsigned int mask;
|
|
|
|
mask = getaddrmask(flash->chip);
|
|
return erase_sector_jedec_common(flash, page, size, mask);
|
|
}
|
|
|
|
int erase_block_jedec(struct flashctx *flash, unsigned int page,
|
|
unsigned int size)
|
|
{
|
|
unsigned int mask;
|
|
|
|
mask = getaddrmask(flash->chip);
|
|
return erase_block_jedec_common(flash, page, size, mask);
|
|
}
|
|
|
|
int erase_chip_jedec(struct flashctx *flash)
|
|
{
|
|
unsigned int mask;
|
|
|
|
mask = getaddrmask(flash->chip);
|
|
return erase_chip_jedec_common(flash, mask);
|
|
}
|
|
|
|
struct unlockblock {
|
|
unsigned int size;
|
|
unsigned int count;
|
|
};
|
|
|
|
typedef int (*unlockblock_func)(const struct flashctx *flash, chipaddr offset);
|
|
static int regspace2_walk_unlockblocks(const struct flashctx *flash, const struct unlockblock *block, unlockblock_func func)
|
|
{
|
|
chipaddr off = flash->virtual_registers + 2;
|
|
while (block->count != 0) {
|
|
unsigned int j;
|
|
for (j = 0; j < block->count; j++) {
|
|
if (func(flash, off))
|
|
return -1;
|
|
off += block->size;
|
|
}
|
|
block++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define REG2_RWLOCK ((1 << 2) | (1 << 0))
|
|
#define REG2_LOCKDOWN (1 << 1)
|
|
#define REG2_MASK (REG2_RWLOCK | REG2_LOCKDOWN)
|
|
|
|
static int printlock_regspace2_block(const struct flashctx *flash, chipaddr offset)
|
|
{
|
|
chipaddr wrprotect = flash->virtual_registers + offset + 2;
|
|
uint8_t state = chip_readb(flash, wrprotect);
|
|
msg_cdbg("Lock status of block at 0x%0*" PRIxPTR " is ", PRIxPTR_WIDTH, offset);
|
|
switch (state & REG2_MASK) {
|
|
case 0:
|
|
msg_cdbg("Full Access.\n");
|
|
break;
|
|
case 1:
|
|
msg_cdbg("Write Lock (Default State).\n");
|
|
break;
|
|
case 2:
|
|
msg_cdbg("Locked Open (Full Access, Locked Down).\n");
|
|
break;
|
|
case 3:
|
|
msg_cdbg("Write Lock, Locked Down.\n");
|
|
break;
|
|
case 4:
|
|
msg_cdbg("Read Lock.\n");
|
|
break;
|
|
case 5:
|
|
msg_cdbg("Read/Write Lock.\n");
|
|
break;
|
|
case 6:
|
|
msg_cdbg("Read Lock, Locked Down.\n");
|
|
break;
|
|
case 7:
|
|
msg_cdbg("Read/Write Lock, Locked Down.\n");
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int printlock_regspace2_blocks(const struct flashctx *flash, const struct unlockblock *blocks)
|
|
{
|
|
return regspace2_walk_unlockblocks(flash, blocks, &printlock_regspace2_block);
|
|
}
|
|
|
|
static int printlock_regspace2_uniform(struct flashctx *flash, unsigned long block_size)
|
|
{
|
|
const unsigned int elems = flash->chip->total_size * 1024 / block_size;
|
|
struct unlockblock blocks[2] = {{.size = block_size, .count = elems}};
|
|
return regspace2_walk_unlockblocks(flash, blocks, &printlock_regspace2_block);
|
|
}
|
|
|
|
int printlock_regspace2_uniform_64k(struct flashctx *flash)
|
|
{
|
|
return printlock_regspace2_uniform(flash, 64 * 1024);
|
|
}
|
|
|
|
int printlock_regspace2_block_eraser_0(struct flashctx *flash)
|
|
{
|
|
// FIXME: this depends on the eraseblocks not to be filled up completely (i.e. to be null-terminated).
|
|
const struct unlockblock *unlockblocks =
|
|
(const struct unlockblock *)flash->chip->block_erasers[0].eraseblocks;
|
|
return regspace2_walk_unlockblocks(flash, unlockblocks, &printlock_regspace2_block);
|
|
}
|
|
|
|
int printlock_regspace2_block_eraser_1(struct flashctx *flash)
|
|
{
|
|
// FIXME: this depends on the eraseblocks not to be filled up completely (i.e. to be null-terminated).
|
|
const struct unlockblock *unlockblocks =
|
|
(const struct unlockblock *)flash->chip->block_erasers[1].eraseblocks;
|
|
return regspace2_walk_unlockblocks(flash, unlockblocks, &printlock_regspace2_block);
|
|
}
|
|
|
|
static int changelock_regspace2_block(const struct flashctx *flash, chipaddr offset, uint8_t new_bits)
|
|
{
|
|
chipaddr wrprotect = flash->virtual_registers + offset + 2;
|
|
uint8_t old;
|
|
|
|
if (new_bits & ~REG2_MASK) {
|
|
msg_cerr("Invalid locking change 0x%02x requested at 0x%0*" PRIxPTR "! "
|
|
"Please report a bug at flashrom@flashrom.org\n",
|
|
new_bits, PRIxPTR_WIDTH, offset);
|
|
return -1;
|
|
}
|
|
old = chip_readb(flash, wrprotect);
|
|
/* Early exist if no change (of read/write/lockdown) was requested. */
|
|
if (((old ^ new_bits) & REG2_MASK) == 0) {
|
|
msg_cdbg2("Locking status at 0x%0*" PRIxPTR " not changed\n", PRIxPTR_WIDTH, offset);
|
|
return 0;
|
|
}
|
|
/* Normally lockdowns can not be cleared. Try nevertheless if requested. */
|
|
if ((old & REG2_LOCKDOWN) && !(new_bits & REG2_LOCKDOWN)) {
|
|
chip_writeb(flash, old & ~REG2_LOCKDOWN, wrprotect);
|
|
if (chip_readb(flash, wrprotect) != (old & ~REG2_LOCKDOWN)) {
|
|
msg_cerr("Lockdown can't be removed at 0x%0*" PRIxPTR "!\n", PRIxPTR_WIDTH, offset);
|
|
return -1;
|
|
}
|
|
}
|
|
/* Change read or write lock? */
|
|
if ((old ^ new_bits) & REG2_RWLOCK) {
|
|
/* Do not lockdown yet. */
|
|
msg_cdbg("Changing locking status at 0x%0*" PRIxPTR " to 0x%02x\n", PRIxPTR_WIDTH, offset, new_bits & REG2_RWLOCK);
|
|
chip_writeb(flash, new_bits & REG2_RWLOCK, wrprotect);
|
|
if (chip_readb(flash, wrprotect) != (new_bits & REG2_RWLOCK)) {
|
|
msg_cerr("Locking status change FAILED at 0x%0*" PRIxPTR "!\n", PRIxPTR_WIDTH, offset);
|
|
return -1;
|
|
}
|
|
}
|
|
/* Enable lockdown if requested. */
|
|
if (!(old & REG2_LOCKDOWN) && (new_bits & REG2_LOCKDOWN)) {
|
|
msg_cdbg("Enabling lockdown at 0x%0*" PRIxPTR "\n", PRIxPTR_WIDTH, offset);
|
|
chip_writeb(flash, new_bits, wrprotect);
|
|
if (chip_readb(flash, wrprotect) != new_bits) {
|
|
msg_cerr("Enabling lockdown FAILED at 0x%0*" PRIxPTR "!\n", PRIxPTR_WIDTH, offset);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int unlock_regspace2_block(const struct flashctx *flash, chipaddr off)
|
|
{
|
|
chipaddr wrprotect = flash->virtual_registers + off + 2;
|
|
uint8_t old = chip_readb(flash, wrprotect);
|
|
/* We don't care for the lockdown bit as long as the RW locks are 0 after we're done */
|
|
return changelock_regspace2_block(flash, off, old & ~REG2_RWLOCK);
|
|
}
|
|
|
|
static int unlock_regspace2_uniform(struct flashctx *flash, unsigned long block_size)
|
|
{
|
|
const unsigned int elems = flash->chip->total_size * 1024 / block_size;
|
|
struct unlockblock blocks[2] = {{.size = block_size, .count = elems}};
|
|
return regspace2_walk_unlockblocks(flash, blocks, &unlock_regspace2_block);
|
|
}
|
|
|
|
int unlock_regspace2_uniform_64k(struct flashctx *flash)
|
|
{
|
|
return unlock_regspace2_uniform(flash, 64 * 1024);
|
|
}
|
|
|
|
int unlock_regspace2_uniform_32k(struct flashctx *flash)
|
|
{
|
|
return unlock_regspace2_uniform(flash, 32 * 1024);
|
|
}
|
|
|
|
int unlock_regspace2_block_eraser_0(struct flashctx *flash)
|
|
{
|
|
// FIXME: this depends on the eraseblocks not to be filled up completely (i.e. to be null-terminated).
|
|
const struct unlockblock *unlockblocks =
|
|
(const struct unlockblock *)flash->chip->block_erasers[0].eraseblocks;
|
|
return regspace2_walk_unlockblocks(flash, unlockblocks, &unlock_regspace2_block);
|
|
}
|
|
|
|
int unlock_regspace2_block_eraser_1(struct flashctx *flash)
|
|
{
|
|
// FIXME: this depends on the eraseblocks not to be filled up completely (i.e. to be null-terminated).
|
|
const struct unlockblock *unlockblocks =
|
|
(const struct unlockblock *)flash->chip->block_erasers[1].eraseblocks;
|
|
return regspace2_walk_unlockblocks(flash, unlockblocks, &unlock_regspace2_block);
|
|
}
|
|
|