1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-26 22:52:34 +02:00
flashrom/erasure_layout.c
Thomas Heijligen 90286fe643 printf: Use inttype.h macros for format strings
DJGPP for compiling DOS has other sizes for the normal int types and
therefore throwing errors when using %i %d or %x with uint32_t.

Fix these warnings by using the macros created for it and provided in
inttypes.h.

Change-Id: Ia75b6df981ce60c891161fe553c7ceab8570178d
Signed-off-by: Thomas Heijligen <thomas.heijligen@secunet.com>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/73040
Reviewed-by: Anastasia Klimchuk <aklm@chromium.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2023-04-27 09:36:46 +00:00

406 lines
13 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2022 Aarya Chaumal
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <limits.h>
#include <stdbool.h>
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#include "include/flash.h"
#include "include/layout.h"
#include "include/erasure_layout.h"
static size_t calculate_block_count(const struct flashchip *chip, size_t eraser_idx)
{
size_t block_count = 0;
chipoff_t addr = 0;
for (size_t i = 0; addr < chip->total_size * 1024; i++) {
const struct eraseblock *block = &chip->block_erasers[eraser_idx].eraseblocks[i];
block_count += block->count;
addr += block->size * block->count;
}
return block_count;
}
static void init_eraseblock(struct erase_layout *layout, size_t idx, size_t block_num,
chipoff_t start_addr, chipoff_t end_addr, size_t *sub_block_index)
{
struct eraseblock_data *edata = &layout[idx].layout_list[block_num];
edata->start_addr = start_addr;
edata->end_addr = end_addr;
edata->selected = false;
edata->block_num = block_num;
if (!idx)
return;
edata->first_sub_block_index = *sub_block_index;
struct eraseblock_data *subedata = &layout[idx - 1].layout_list[*sub_block_index];
while (subedata->start_addr >= start_addr && subedata->end_addr <= end_addr &&
*sub_block_index < layout[idx-1].block_count) {
(*sub_block_index)++;
subedata++;
}
edata->last_sub_block_index = *sub_block_index - 1;
}
/*
* @brief Function to free the created erase_layout
*
* @param layout pointer to allocated layout
* @param erasefn_count number of erase functions for which the layout was created
*
*/
void free_erase_layout(struct erase_layout *layout, unsigned int erasefn_count)
{
if (!layout)
return;
for (size_t i = 0; i < erasefn_count; i++) {
free(layout[i].layout_list);
}
free(layout);
}
/*
* @brief Function to create an erase layout
*
* @param flashctx flash context
* @param e_layout address to the pointer to store the layout
* @return 0 on success,
* -1 if layout creation fails
*
* This function creates a layout of which erase functions erase which regions
* of the flash chip. This helps to optimally select the erase functions for
* erase/write operations.
*/
int create_erase_layout(struct flashctx *const flashctx, struct erase_layout **e_layout)
{
const struct flashchip *chip = flashctx->chip;
const size_t erasefn_count = count_usable_erasers(flashctx);
if (!erasefn_count) {
msg_gerr("No erase functions supported\n");
return 0;
}
struct erase_layout *layout = calloc(erasefn_count, sizeof(struct erase_layout));
if (!layout) {
msg_gerr("Out of memory!\n");
return -1;
}
size_t layout_idx = 0;
for (size_t eraser_idx = 0; eraser_idx < NUM_ERASEFUNCTIONS; eraser_idx++) {
if (check_block_eraser(flashctx, eraser_idx, 0))
continue;
layout[layout_idx].eraser = &chip->block_erasers[eraser_idx];
const size_t block_count = calculate_block_count(flashctx->chip, eraser_idx);
size_t sub_block_index = 0;
layout[layout_idx].block_count = block_count;
layout[layout_idx].layout_list = (struct eraseblock_data *)calloc(block_count,
sizeof(struct eraseblock_data));
if (!layout[layout_idx].layout_list) {
free_erase_layout(layout, layout_idx);
return -1;
}
size_t block_num = 0;
chipoff_t start_addr = 0;
for (int i = 0; block_num < block_count; i++) {
const struct eraseblock *block = &chip->block_erasers[eraser_idx].eraseblocks[i];
for (size_t num = 0; num < block->count; num++) {
chipoff_t end_addr = start_addr + block->size - 1;
init_eraseblock(layout, layout_idx, block_num,
start_addr, end_addr, &sub_block_index);
block_num += 1;
start_addr = end_addr + 1;
}
}
layout_idx++;
}
*e_layout = layout;
return layout_idx;
}
/*
* @brief Function to align start and address of the region boundaries
*
* @param layout erase layout
* @param flashctx flash context
* @param region_start pointer to start address of the region to align
* @param region_end pointer to end address of the region to align
*
* This function aligns start and end address of the region (in struct walk_info)
* to some erase sector boundaries and modify the region start and end addresses
* to match nearest erase sector boundaries. This function will be used in the
* new algorithm for erase function selection.
*/
static void align_region(const struct erase_layout *layout, struct flashctx *const flashctx,
chipoff_t *region_start, chipoff_t *region_end)
{
chipoff_t start_diff = UINT_MAX, end_diff = UINT_MAX;
const size_t erasefn_count = count_usable_erasers(flashctx);
for (size_t i = 0; i < erasefn_count; i++) {
for (size_t j = 0; j < layout[i].block_count; j++) {
const struct eraseblock_data *ll = &layout[i].layout_list[j];
if (ll->start_addr <= *region_start)
start_diff = (*region_start - ll->start_addr) > start_diff ?
start_diff : (*region_start - ll->start_addr);
if (ll->end_addr >= *region_end)
end_diff = (ll->end_addr - *region_end) > end_diff ?
end_diff : (ll->end_addr - *region_end);
}
}
if (start_diff) {
msg_cinfo("Region start not sector aligned! Extending start boundaries...\n");
*region_start = *region_start - start_diff;
}
if (end_diff) {
msg_cinfo("Region end not sector aligned! Extending end boundaries...\n");
*region_end = *region_end + end_diff;
}
}
/*
* @brief Function to select the list of sectors that need erasing
*
* @param flashctx flash context
* @param layout erase layout
* @param findex index of the erase function
* @param block_num index of the block to erase according to the erase function index
* @param curcontents buffer containg the current contents of the flash
* @param newcontents buffer containg the new contents of the flash
* @param rstart start address of the region
* @rend rend end address of the region
*/
static void select_erase_functions(struct flashctx *flashctx, const struct erase_layout *layout,
size_t findex, size_t block_num, uint8_t *curcontents, uint8_t *newcontents,
chipoff_t rstart, chipoff_t rend)
{
struct eraseblock_data *ll = &layout[findex].layout_list[block_num];
if (!findex) {
if (ll->start_addr >= rstart && ll->end_addr <= rend) {
chipoff_t start_addr = ll->start_addr;
chipoff_t end_addr = ll->end_addr;
const chipsize_t erase_len = end_addr - start_addr + 1;
const uint8_t erased_value = ERASED_VALUE(flashctx);
ll->selected = need_erase(curcontents + start_addr, newcontents + start_addr, erase_len,
flashctx->chip->gran, erased_value);
}
} else {
int count = 0;
const int sub_block_start = ll->first_sub_block_index;
const int sub_block_end = ll->last_sub_block_index;
for (int j = sub_block_start; j <= sub_block_end; j++) {
select_erase_functions(flashctx, layout, findex - 1, j, curcontents, newcontents,
rstart, rend);
if (layout[findex - 1].layout_list[j].selected)
count++;
}
const int total_blocks = sub_block_end - sub_block_start + 1;
if (count && count > total_blocks/2) {
if (ll->start_addr >= rstart && ll->end_addr <= rend) {
for (int j = sub_block_start; j <= sub_block_end; j++)
layout[findex - 1].layout_list[j].selected = false;
ll->selected = true;
}
}
}
}
/*
* @brief wrapper to use the erase algorithm
*
* @param flashctx flash context
* @param region_start start address of the region
* @param region_end end address of the region
* @param curcontents buffer containg the current contents of the flash
* @param newcontents buffer containg the new contents of the flash
* @param erase_layout erase layout
* @param all_skipped pointer to the flag to chec if any block was erased
*/
int erase_write(struct flashctx *const flashctx, chipoff_t region_start, chipoff_t region_end,
uint8_t *curcontents, uint8_t *newcontents,
struct erase_layout *erase_layout, bool *all_skipped)
{
const size_t erasefn_count = count_usable_erasers(flashctx);
int ret = 0;
size_t i;
chipoff_t old_start = region_start, old_end = region_end;
align_region(erase_layout, flashctx, &region_start, &region_end);
uint8_t *old_start_buf = NULL, *old_end_buf = NULL;
old_start_buf = (uint8_t *)malloc(old_start - region_start);
if (!old_start_buf) {
msg_cerr("Not enough memory!\n");
ret = -1;
goto _end;
}
old_end_buf = (uint8_t *)malloc(region_end - old_end);
if (!old_end_buf) {
msg_cerr("Not enough memory!\n");
ret = -1;
goto _end;
}
if (old_start - region_start) {
read_flash(flashctx, curcontents + region_start, region_start, old_start - region_start);
memcpy(old_start_buf, newcontents + region_start, old_start - region_start);
memcpy(newcontents + region_start, curcontents + region_start, old_start - region_start);
}
if (region_end - old_end) {
read_flash(flashctx, curcontents + old_end, old_end, region_end - old_end);
memcpy(old_end_buf, newcontents + old_end, region_end - old_end);
memcpy(newcontents + old_end, curcontents + old_end, region_end - old_end);
}
// select erase functions
for (i = 0; i < erase_layout[erasefn_count - 1].block_count; i++) {
if (erase_layout[erasefn_count - 1].layout_list[i].start_addr <= region_end &&
region_start <= erase_layout[erasefn_count - 1].layout_list[i].end_addr)
select_erase_functions(flashctx, erase_layout,
erasefn_count - 1, i,
curcontents, newcontents,
region_start, region_end);
}
for (i = 0; i < erasefn_count; i++) {
for (size_t j = 0; j < erase_layout[i].block_count; j++) {
if (!erase_layout[i].layout_list[j].selected) continue;
// erase
chipoff_t start_addr = erase_layout[i].layout_list[j].start_addr;
unsigned int block_len = erase_layout[i].layout_list[j].end_addr - start_addr + 1;
const uint8_t erased_value = ERASED_VALUE(flashctx);
// execute erase
erasefunc_t *erasefn = lookup_erase_func_ptr(erase_layout[i].eraser);
if (!flashctx->flags.skip_unwritable_regions) {
if (check_for_unwritable_regions(flashctx, start_addr, block_len))
goto _end;
}
unsigned int len;
for (unsigned int addr = start_addr; addr < start_addr + block_len; addr += len) {
struct flash_region region;
get_flash_region(flashctx, addr, &region);
len = min(start_addr + block_len, region.end) - addr;
if (region.write_prot) {
msg_gdbg("%s: cannot erase inside %s "
"region (%#08"PRIx32"..%#08"PRIx32"), skipping range (%#08x..%#08x).\n",
__func__, region.name,
region.start, region.end - 1,
addr, addr + len - 1);
free(region.name);
continue;
}
msg_gdbg("%s: %s region (%#08"PRIx32"..%#08"PRIx32") is "
"writable, erasing range (%#08x..%#08x).\n",
__func__, region.name,
region.start, region.end - 1,
addr, addr + len - 1);
free(region.name);
if (erasefn(flashctx, addr, len))
goto _end;
if (check_erased_range(flashctx, addr, len)) {
msg_cerr("ERASE FAILED!\n");
goto _end;
}
}
ret = erasefn(flashctx, start_addr, block_len);
if (ret) {
msg_cerr("Failed to execute erase command "
"for offset %#"PRIx32" to %#"PRIx32".\n",
start_addr, start_addr + block_len);
ret = -1;
goto _end;
}
// adjust curcontents
memset(curcontents+start_addr, erased_value, block_len);
// after erase make it unselected again
erase_layout[i].layout_list[j].selected = false;
msg_cdbg("E(%"PRIx32":%"PRIx32")", start_addr, start_addr + block_len - 1);
// verify erase
ret = check_erased_range(flashctx, start_addr, block_len);
if (ret) {
msg_cerr("Verifying flash. Erase failed for range %#"PRIx32" : %#"PRIx32", Abort.\n",
start_addr, start_addr + block_len - 1);
goto _end;
}
*all_skipped = false;
}
}
// write
unsigned int start_here = 0, len_here = 0, erase_len = region_end - region_start + 1;
while ((len_here = get_next_write(curcontents + region_start + start_here,
newcontents + region_start + start_here,
erase_len - start_here, &start_here,
flashctx->chip->gran))) {
// execute write
ret = write_flash(flashctx,
newcontents + region_start + start_here,
region_start + start_here, len_here);
if (ret) {
msg_cerr("Write failed at %#zx, Abort.\n", i);
ret = -1;
goto _end;
}
// adjust curcontents
memcpy(curcontents + region_start + start_here,
newcontents + region_start + start_here, len_here);
msg_cdbg("W(%"PRIx32":%"PRIx32")", region_start + start_here, region_start + start_here + len_here - 1);
*all_skipped = false;
}
// verify write
ret = verify_range(flashctx, newcontents + region_start, region_start, region_end - region_start);
if (ret) {
msg_cerr("Verifying flash. Write failed for range %#"PRIx32" : %#"PRIx32", Abort.\n",
region_start, region_end);
goto _end;
}
_end:
memcpy(newcontents + region_start, old_start_buf, old_start - region_start);
memcpy(newcontents + old_end, old_end_buf, region_end - old_end);
free(old_start_buf);
free(old_end_buf);
msg_cinfo("Erase/write done from %"PRIx32" to %"PRIx32"\n", region_start, region_end);
return ret;
}