mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-27 23:22:37 +02:00

Allow port I/O related code to be compiled independent from memory mapping functionality. This enables for a better selection of needed hardware access types. Change-Id: I372b4a409f036da766c42bc406b596bc41b0f75a Signed-off-by: Thomas Heijligen <thomas.heijligen@secunet.com> Reviewed-on: https://review.coreboot.org/c/flashrom/+/60110 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Nico Huber <nico.h@gmx.de>
238 lines
6.1 KiB
C
238 lines
6.1 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2009,2010 Carl-Daniel Hailfinger
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <sys/types.h>
|
|
#if !defined (__DJGPP__) && !defined(__LIBPAYLOAD__)
|
|
/* No file access needed/possible to get hardware access permissions. */
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#endif
|
|
#include "flash.h"
|
|
#include "hwaccess.h"
|
|
|
|
/* Prevent reordering and/or merging of reads/writes to hardware.
|
|
* Such reordering and/or merging would break device accesses which depend on the exact access order.
|
|
*/
|
|
static inline void sync_primitive(void)
|
|
{
|
|
/* This is not needed for...
|
|
* - x86: uses uncached accesses which have a strongly ordered memory model.
|
|
* - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model.
|
|
* - ARM: uses a strongly ordered memory model for device memories.
|
|
*
|
|
* See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt
|
|
*/
|
|
// cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h
|
|
#if defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || \
|
|
defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || \
|
|
defined(_ARCH_PPC64) || defined(__ppc)
|
|
asm("eieio" : : : "memory");
|
|
#elif (__sparc__) || defined (__sparc)
|
|
#if defined(__sparc_v9__) || defined(__sparcv9)
|
|
/* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like
|
|
* RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we
|
|
* use the strongest hardware memory barriers that exist on Sparc V9. */
|
|
asm volatile ("membar #Sync" ::: "memory");
|
|
#elif defined(__sparc_v8__) || defined(__sparcv8)
|
|
/* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run
|
|
* on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable
|
|
* operation in the V8 instruction set anyway. If you know better then please tell us. */
|
|
asm volatile ("stbar");
|
|
#else
|
|
#error Unknown and/or unsupported SPARC instruction set version detected.
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void mmio_writeb(uint8_t val, void *addr)
|
|
{
|
|
*(volatile uint8_t *) addr = val;
|
|
sync_primitive();
|
|
}
|
|
|
|
void mmio_writew(uint16_t val, void *addr)
|
|
{
|
|
*(volatile uint16_t *) addr = val;
|
|
sync_primitive();
|
|
}
|
|
|
|
void mmio_writel(uint32_t val, void *addr)
|
|
{
|
|
*(volatile uint32_t *) addr = val;
|
|
sync_primitive();
|
|
}
|
|
|
|
uint8_t mmio_readb(const void *addr)
|
|
{
|
|
return *(volatile const uint8_t *) addr;
|
|
}
|
|
|
|
uint16_t mmio_readw(const void *addr)
|
|
{
|
|
return *(volatile const uint16_t *) addr;
|
|
}
|
|
|
|
uint32_t mmio_readl(const void *addr)
|
|
{
|
|
return *(volatile const uint32_t *) addr;
|
|
}
|
|
|
|
void mmio_readn(const void *addr, uint8_t *buf, size_t len)
|
|
{
|
|
memcpy(buf, addr, len);
|
|
return;
|
|
}
|
|
|
|
void mmio_le_writeb(uint8_t val, void *addr)
|
|
{
|
|
mmio_writeb(cpu_to_le8(val), addr);
|
|
}
|
|
|
|
void mmio_le_writew(uint16_t val, void *addr)
|
|
{
|
|
mmio_writew(cpu_to_le16(val), addr);
|
|
}
|
|
|
|
void mmio_le_writel(uint32_t val, void *addr)
|
|
{
|
|
mmio_writel(cpu_to_le32(val), addr);
|
|
}
|
|
|
|
uint8_t mmio_le_readb(const void *addr)
|
|
{
|
|
return le_to_cpu8(mmio_readb(addr));
|
|
}
|
|
|
|
uint16_t mmio_le_readw(const void *addr)
|
|
{
|
|
return le_to_cpu16(mmio_readw(addr));
|
|
}
|
|
|
|
uint32_t mmio_le_readl(const void *addr)
|
|
{
|
|
return le_to_cpu32(mmio_readl(addr));
|
|
}
|
|
|
|
enum mmio_write_type {
|
|
mmio_write_type_b,
|
|
mmio_write_type_w,
|
|
mmio_write_type_l,
|
|
};
|
|
|
|
struct undo_mmio_write_data {
|
|
void *addr;
|
|
int reg;
|
|
enum mmio_write_type type;
|
|
union {
|
|
uint8_t bdata;
|
|
uint16_t wdata;
|
|
uint32_t ldata;
|
|
};
|
|
};
|
|
|
|
static int undo_mmio_write(void *p)
|
|
{
|
|
struct undo_mmio_write_data *data = p;
|
|
msg_pdbg("Restoring MMIO space at %p\n", data->addr);
|
|
switch (data->type) {
|
|
case mmio_write_type_b:
|
|
mmio_writeb(data->bdata, data->addr);
|
|
break;
|
|
case mmio_write_type_w:
|
|
mmio_writew(data->wdata, data->addr);
|
|
break;
|
|
case mmio_write_type_l:
|
|
mmio_writel(data->ldata, data->addr);
|
|
break;
|
|
}
|
|
/* p was allocated in register_undo_mmio_write. */
|
|
free(p);
|
|
return 0;
|
|
}
|
|
|
|
#define register_undo_mmio_write(a, c) \
|
|
{ \
|
|
struct undo_mmio_write_data *undo_mmio_write_data; \
|
|
undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data)); \
|
|
if (!undo_mmio_write_data) { \
|
|
msg_gerr("Out of memory!\n"); \
|
|
exit(1); \
|
|
} \
|
|
undo_mmio_write_data->addr = a; \
|
|
undo_mmio_write_data->type = mmio_write_type_##c; \
|
|
undo_mmio_write_data->c##data = mmio_read##c(a); \
|
|
register_shutdown(undo_mmio_write, undo_mmio_write_data); \
|
|
}
|
|
|
|
#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b)
|
|
#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w)
|
|
#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l)
|
|
|
|
void rmmio_writeb(uint8_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writeb(addr);
|
|
mmio_writeb(val, addr);
|
|
}
|
|
|
|
void rmmio_writew(uint16_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writew(addr);
|
|
mmio_writew(val, addr);
|
|
}
|
|
|
|
void rmmio_writel(uint32_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writel(addr);
|
|
mmio_writel(val, addr);
|
|
}
|
|
|
|
void rmmio_le_writeb(uint8_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writeb(addr);
|
|
mmio_le_writeb(val, addr);
|
|
}
|
|
|
|
void rmmio_le_writew(uint16_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writew(addr);
|
|
mmio_le_writew(val, addr);
|
|
}
|
|
|
|
void rmmio_le_writel(uint32_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writel(addr);
|
|
mmio_le_writel(val, addr);
|
|
}
|
|
|
|
void rmmio_valb(void *addr)
|
|
{
|
|
register_undo_mmio_writeb(addr);
|
|
}
|
|
|
|
void rmmio_valw(void *addr)
|
|
{
|
|
register_undo_mmio_writew(addr);
|
|
}
|
|
|
|
void rmmio_vall(void *addr)
|
|
{
|
|
register_undo_mmio_writel(addr);
|
|
}
|