mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-26 22:52:34 +02:00

hwaccess_physmap.c: make `void *sys_physmap(()` static hwaccess_x86_io.c: Add missing include Change-Id: I5062c5a62b90f7a189488f3f569dc357bd2cb85f Signed-off-by: Thomas Heijligen <thomas.heijligen@secunet.com> Reviewed-on: https://review.coreboot.org/c/flashrom/+/69831 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Angel Pons <th3fanbus@gmail.com> Reviewed-by: Paul Menzel <paulepanter@mailbox.org> Reviewed-by: Nico Huber <nico.h@gmx.de> Reviewed-by: Felix Singer <felixsinger@posteo.net>
578 lines
16 KiB
C
578 lines
16 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2009 Peter Stuge <peter@stuge.se>
|
|
* Copyright (C) 2009 coresystems GmbH
|
|
* Copyright (C) 2010 Carl-Daniel Hailfinger
|
|
* Copyright (C) 2010 Rudolf Marek <r.marek@assembler.cz>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <unistd.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include "flash.h"
|
|
#include "platform.h"
|
|
#include "hwaccess_physmap.h"
|
|
|
|
#if !defined(__DJGPP__) && !defined(__LIBPAYLOAD__)
|
|
/* No file access needed/possible to get mmap access permissions or access MSR. */
|
|
#include <unistd.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <fcntl.h>
|
|
#endif
|
|
|
|
#ifdef __DJGPP__
|
|
#include <dpmi.h>
|
|
#include <malloc.h>
|
|
#include <sys/nearptr.h>
|
|
|
|
#define ONE_MEGABYTE (1024 * 1024)
|
|
#define MEM_DEV "dpmi"
|
|
|
|
static void *realmem_map_aligned;
|
|
|
|
static void *map_first_meg(uintptr_t phys_addr, size_t len)
|
|
{
|
|
void *realmem_map;
|
|
size_t pagesize;
|
|
|
|
if (realmem_map_aligned)
|
|
return realmem_map_aligned + phys_addr;
|
|
|
|
/* valloc() from DJGPP 2.05 does not work properly */
|
|
pagesize = getpagesize();
|
|
|
|
realmem_map = malloc(ONE_MEGABYTE + pagesize);
|
|
|
|
if (!realmem_map)
|
|
return ERROR_PTR;
|
|
|
|
realmem_map_aligned = (void *)(((size_t) realmem_map +
|
|
(pagesize - 1)) & ~(pagesize - 1));
|
|
|
|
if (__djgpp_map_physical_memory(realmem_map_aligned, ONE_MEGABYTE, 0)) {
|
|
free(realmem_map);
|
|
realmem_map_aligned = NULL;
|
|
return ERROR_PTR;
|
|
}
|
|
|
|
return realmem_map_aligned + phys_addr;
|
|
}
|
|
|
|
static void *sys_physmap(uintptr_t phys_addr, size_t len)
|
|
{
|
|
int ret;
|
|
__dpmi_meminfo mi;
|
|
|
|
/* Enable 4GB limit on DS descriptor. */
|
|
if (!__djgpp_nearptr_enable())
|
|
return ERROR_PTR;
|
|
|
|
if ((phys_addr + len - 1) < ONE_MEGABYTE) {
|
|
/* We need to use another method to map first 1MB. */
|
|
return map_first_meg(phys_addr, len);
|
|
}
|
|
|
|
mi.address = phys_addr;
|
|
mi.size = len;
|
|
ret = __dpmi_physical_address_mapping(&mi);
|
|
|
|
if (ret != 0)
|
|
return ERROR_PTR;
|
|
|
|
return (void *) mi.address + __djgpp_conventional_base;
|
|
}
|
|
|
|
#define sys_physmap_rw_uncached sys_physmap
|
|
#define sys_physmap_ro_cached sys_physmap
|
|
|
|
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
|
|
{
|
|
__dpmi_meminfo mi;
|
|
|
|
/* There is no known way to unmap the first 1 MB. The DPMI server will
|
|
* do this for us on exit.
|
|
*/
|
|
if ((virt_addr >= realmem_map_aligned) &&
|
|
((virt_addr + len) <= (realmem_map_aligned + ONE_MEGABYTE))) {
|
|
return;
|
|
}
|
|
|
|
mi.address = (unsigned long) virt_addr;
|
|
__dpmi_free_physical_address_mapping(&mi);
|
|
}
|
|
|
|
#elif defined(__LIBPAYLOAD__)
|
|
#include <arch/virtual.h>
|
|
|
|
#define MEM_DEV ""
|
|
|
|
static void *sys_physmap(uintptr_t phys_addr, size_t len)
|
|
{
|
|
return (void *)phys_to_virt(phys_addr);
|
|
}
|
|
|
|
#define sys_physmap_rw_uncached sys_physmap
|
|
#define sys_physmap_ro_cached sys_physmap
|
|
|
|
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
|
|
{
|
|
}
|
|
#elif defined(__MACH__) && defined(__APPLE__)
|
|
#include <DirectHW/DirectHW.h>
|
|
|
|
#define MEM_DEV "DirectHW"
|
|
|
|
static void *sys_physmap(uintptr_t phys_addr, size_t len)
|
|
{
|
|
/* The short form of ?: is a GNU extension.
|
|
* FIXME: map_physical returns NULL both for errors and for success
|
|
* if the region is mapped at virtual address zero. If in doubt, report
|
|
* an error until a better interface exists.
|
|
*/
|
|
return map_physical(phys_addr, len) ? : ERROR_PTR;
|
|
}
|
|
|
|
/* The OS X driver does not differentiate between mapping types. */
|
|
#define sys_physmap_rw_uncached sys_physmap
|
|
#define sys_physmap_ro_cached sys_physmap
|
|
|
|
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
|
|
{
|
|
unmap_physical(virt_addr, len);
|
|
}
|
|
|
|
#else
|
|
#include <sys/mman.h>
|
|
|
|
#if defined (__sun) && (defined(__i386) || defined(__amd64))
|
|
# define MEM_DEV "/dev/xsvc"
|
|
#else
|
|
# define MEM_DEV "/dev/mem"
|
|
#endif
|
|
|
|
static int fd_mem = -1;
|
|
static int fd_mem_cached = -1;
|
|
|
|
/* For MMIO access. Must be uncached, doesn't make sense to restrict to ro. */
|
|
static void *sys_physmap_rw_uncached(uintptr_t phys_addr, size_t len)
|
|
{
|
|
void *virt_addr;
|
|
|
|
if (-1 == fd_mem) {
|
|
/* Open the memory device UNCACHED. Important for MMIO. */
|
|
if (-1 == (fd_mem = open(MEM_DEV, O_RDWR | O_SYNC))) {
|
|
msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno));
|
|
return ERROR_PTR;
|
|
}
|
|
}
|
|
|
|
virt_addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, fd_mem, (off_t)phys_addr);
|
|
return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr;
|
|
}
|
|
|
|
/* For reading DMI/coreboot/whatever tables. We should never write, and we
|
|
* do not care about caching.
|
|
*/
|
|
static void *sys_physmap_ro_cached(uintptr_t phys_addr, size_t len)
|
|
{
|
|
void *virt_addr;
|
|
|
|
if (-1 == fd_mem_cached) {
|
|
/* Open the memory device CACHED. */
|
|
if (-1 == (fd_mem_cached = open(MEM_DEV, O_RDWR))) {
|
|
msg_perr("Critical error: open(" MEM_DEV "): %s\n", strerror(errno));
|
|
return ERROR_PTR;
|
|
}
|
|
}
|
|
|
|
virt_addr = mmap(NULL, len, PROT_READ, MAP_SHARED, fd_mem_cached, (off_t)phys_addr);
|
|
return MAP_FAILED == virt_addr ? ERROR_PTR : virt_addr;
|
|
}
|
|
|
|
static void sys_physunmap_unaligned(void *virt_addr, size_t len)
|
|
{
|
|
munmap(virt_addr, len);
|
|
}
|
|
#endif
|
|
|
|
#define PHYSM_RW 0
|
|
#define PHYSM_RO 1
|
|
#define PHYSM_NOCLEANUP 0
|
|
#define PHYSM_CLEANUP 1
|
|
#define PHYSM_EXACT 0
|
|
#define PHYSM_ROUND 1
|
|
|
|
/* Round start to nearest page boundary below and set len so that the resulting address range ends at the lowest
|
|
* possible page boundary where the original address range is still entirely contained. It returns the
|
|
* difference between the rounded start address and the original start address. */
|
|
static uintptr_t round_to_page_boundaries(uintptr_t *start, size_t *len)
|
|
{
|
|
uintptr_t page_size = getpagesize();
|
|
uintptr_t page_mask = ~(page_size-1);
|
|
uintptr_t end = *start + *len;
|
|
uintptr_t old_start = *start;
|
|
msg_gspew("page_size=%" PRIxPTR "\n", page_size);
|
|
msg_gspew("pre-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n",
|
|
PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, end);
|
|
*start = *start & page_mask;
|
|
end = (end + page_size - 1) & page_mask;
|
|
*len = end - *start;
|
|
msg_gspew("post-rounding: start=0x%0*" PRIxPTR ", len=0x%zx, end=0x%0*" PRIxPTR "\n",
|
|
PRIxPTR_WIDTH, *start, *len, PRIxPTR_WIDTH, *start + *len);
|
|
return old_start - *start;
|
|
}
|
|
|
|
struct undo_physmap_data {
|
|
void *virt_addr;
|
|
size_t len;
|
|
};
|
|
|
|
static int undo_physmap(void *data)
|
|
{
|
|
if (data == NULL) {
|
|
msg_perr("%s: tried to physunmap without valid data!\n", __func__);
|
|
return 1;
|
|
}
|
|
struct undo_physmap_data *d = data;
|
|
physunmap_unaligned(d->virt_addr, d->len);
|
|
free(data);
|
|
return 0;
|
|
}
|
|
|
|
static void *physmap_common(const char *descr, uintptr_t phys_addr, size_t len, bool readonly, bool autocleanup,
|
|
bool round)
|
|
{
|
|
void *virt_addr;
|
|
uintptr_t offset = 0;
|
|
|
|
if (len == 0) {
|
|
msg_pspew("Not mapping %s, zero size at 0x%0*" PRIxPTR ".\n", descr, PRIxPTR_WIDTH, phys_addr);
|
|
return ERROR_PTR;
|
|
}
|
|
|
|
if (round)
|
|
offset = round_to_page_boundaries(&phys_addr, &len);
|
|
|
|
if (readonly)
|
|
virt_addr = sys_physmap_ro_cached(phys_addr, len);
|
|
else
|
|
virt_addr = sys_physmap_rw_uncached(phys_addr, len);
|
|
|
|
if (ERROR_PTR == virt_addr) {
|
|
if (NULL == descr)
|
|
descr = "memory";
|
|
msg_perr("Error accessing %s, 0x%zx bytes at 0x%0*" PRIxPTR "\n",
|
|
descr, len, PRIxPTR_WIDTH, phys_addr);
|
|
msg_perr(MEM_DEV " mmap failed: %s\n", strerror(errno));
|
|
#ifdef __linux__
|
|
if (EINVAL == errno) {
|
|
msg_perr("In Linux this error can be caused by the CONFIG_NONPROMISC_DEVMEM (<2.6.27),\n");
|
|
msg_perr("CONFIG_STRICT_DEVMEM (>=2.6.27) and CONFIG_X86_PAT kernel options.\n");
|
|
msg_perr("Please check if either is enabled in your kernel before reporting a failure.\n");
|
|
msg_perr("You can override CONFIG_X86_PAT at boot with the nopat kernel parameter but\n");
|
|
msg_perr("disabling the other option unfortunately requires a kernel recompile. Sorry!\n");
|
|
}
|
|
#elif defined (__OpenBSD__)
|
|
msg_perr("Please set securelevel=-1 in /etc/rc.securelevel "
|
|
"and reboot, or reboot into\n"
|
|
"single user mode.\n");
|
|
#endif
|
|
return ERROR_PTR;
|
|
}
|
|
|
|
if (autocleanup) {
|
|
struct undo_physmap_data *d = malloc(sizeof(*d));
|
|
if (d == NULL) {
|
|
msg_perr("%s: Out of memory!\n", __func__);
|
|
physunmap_unaligned(virt_addr, len);
|
|
return ERROR_PTR;
|
|
}
|
|
|
|
d->virt_addr = virt_addr;
|
|
d->len = len;
|
|
if (register_shutdown(undo_physmap, d) != 0) {
|
|
msg_perr("%s: Could not register shutdown function!\n", __func__);
|
|
physunmap_unaligned(virt_addr, len);
|
|
return ERROR_PTR;
|
|
}
|
|
}
|
|
|
|
return virt_addr + offset;
|
|
}
|
|
|
|
void physunmap_unaligned(void *virt_addr, size_t len)
|
|
{
|
|
/* No need to check for zero size, such mappings would have yielded ERROR_PTR. */
|
|
if (virt_addr == ERROR_PTR) {
|
|
msg_perr("Trying to unmap a nonexisting mapping!\n"
|
|
"Please report a bug at flashrom@flashrom.org\n");
|
|
return;
|
|
}
|
|
|
|
sys_physunmap_unaligned(virt_addr, len);
|
|
}
|
|
|
|
void physunmap(void *virt_addr, size_t len)
|
|
{
|
|
uintptr_t tmp;
|
|
|
|
/* No need to check for zero size, such mappings would have yielded ERROR_PTR. */
|
|
if (virt_addr == ERROR_PTR) {
|
|
msg_perr("Trying to unmap a nonexisting mapping!\n"
|
|
"Please report a bug at flashrom@flashrom.org\n");
|
|
return;
|
|
}
|
|
tmp = (uintptr_t)virt_addr;
|
|
/* We assume that the virtual address of a page-aligned physical address is page-aligned as well. By
|
|
* extension, rounding a virtual unaligned address as returned by physmap should yield the same offset
|
|
* between rounded and original virtual address as between rounded and original physical address.
|
|
*/
|
|
round_to_page_boundaries(&tmp, &len);
|
|
virt_addr = (void *)tmp;
|
|
physunmap_unaligned(virt_addr, len);
|
|
}
|
|
|
|
void *physmap(const char *descr, uintptr_t phys_addr, size_t len)
|
|
{
|
|
return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_NOCLEANUP, PHYSM_ROUND);
|
|
}
|
|
|
|
void *rphysmap(const char *descr, uintptr_t phys_addr, size_t len)
|
|
{
|
|
return physmap_common(descr, phys_addr, len, PHYSM_RW, PHYSM_CLEANUP, PHYSM_ROUND);
|
|
}
|
|
|
|
void *physmap_ro(const char *descr, uintptr_t phys_addr, size_t len)
|
|
{
|
|
return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_ROUND);
|
|
}
|
|
|
|
void *physmap_ro_unaligned(const char *descr, uintptr_t phys_addr, size_t len)
|
|
{
|
|
return physmap_common(descr, phys_addr, len, PHYSM_RO, PHYSM_NOCLEANUP, PHYSM_EXACT);
|
|
}
|
|
|
|
/* Prevent reordering and/or merging of reads/writes to hardware.
|
|
* Such reordering and/or merging would break device accesses which depend on the exact access order.
|
|
*/
|
|
static inline void sync_primitive(void)
|
|
{
|
|
/* This is not needed for...
|
|
* - x86: uses uncached accesses which have a strongly ordered memory model.
|
|
* - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model.
|
|
* - ARM: uses a strongly ordered memory model for device memories.
|
|
*
|
|
* See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt
|
|
*/
|
|
// cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h
|
|
#if defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || \
|
|
defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || \
|
|
defined(_ARCH_PPC64) || defined(__ppc)
|
|
__asm__("eieio" : : : "memory");
|
|
#elif (__sparc__) || defined (__sparc)
|
|
#if defined(__sparc_v9__) || defined(__sparcv9)
|
|
/* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like
|
|
* RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we
|
|
* use the strongest hardware memory barriers that exist on Sparc V9. */
|
|
__asm__ volatile ("membar #Sync" ::: "memory");
|
|
#elif defined(__sparc_v8__) || defined(__sparcv8)
|
|
/* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run
|
|
* on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable
|
|
* operation in the V8 instruction set anyway. If you know better then please tell us. */
|
|
__asm__ volatile ("stbar");
|
|
#else
|
|
#error Unknown and/or unsupported SPARC instruction set version detected.
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void mmio_writeb(uint8_t val, void *addr)
|
|
{
|
|
*(volatile uint8_t *) addr = val;
|
|
sync_primitive();
|
|
}
|
|
|
|
void mmio_writew(uint16_t val, void *addr)
|
|
{
|
|
*(volatile uint16_t *) addr = val;
|
|
sync_primitive();
|
|
}
|
|
|
|
void mmio_writel(uint32_t val, void *addr)
|
|
{
|
|
*(volatile uint32_t *) addr = val;
|
|
sync_primitive();
|
|
}
|
|
|
|
uint8_t mmio_readb(const void *addr)
|
|
{
|
|
return *(volatile const uint8_t *) addr;
|
|
}
|
|
|
|
uint16_t mmio_readw(const void *addr)
|
|
{
|
|
return *(volatile const uint16_t *) addr;
|
|
}
|
|
|
|
uint32_t mmio_readl(const void *addr)
|
|
{
|
|
return *(volatile const uint32_t *) addr;
|
|
}
|
|
|
|
void mmio_readn(const void *addr, uint8_t *buf, size_t len)
|
|
{
|
|
memcpy(buf, addr, len);
|
|
return;
|
|
}
|
|
|
|
void mmio_le_writeb(uint8_t val, void *addr)
|
|
{
|
|
mmio_writeb(cpu_to_le8(val), addr);
|
|
}
|
|
|
|
void mmio_le_writew(uint16_t val, void *addr)
|
|
{
|
|
mmio_writew(cpu_to_le16(val), addr);
|
|
}
|
|
|
|
void mmio_le_writel(uint32_t val, void *addr)
|
|
{
|
|
mmio_writel(cpu_to_le32(val), addr);
|
|
}
|
|
|
|
uint8_t mmio_le_readb(const void *addr)
|
|
{
|
|
return le_to_cpu8(mmio_readb(addr));
|
|
}
|
|
|
|
uint16_t mmio_le_readw(const void *addr)
|
|
{
|
|
return le_to_cpu16(mmio_readw(addr));
|
|
}
|
|
|
|
uint32_t mmio_le_readl(const void *addr)
|
|
{
|
|
return le_to_cpu32(mmio_readl(addr));
|
|
}
|
|
|
|
enum mmio_write_type {
|
|
mmio_write_type_b,
|
|
mmio_write_type_w,
|
|
mmio_write_type_l,
|
|
};
|
|
|
|
struct undo_mmio_write_data {
|
|
void *addr;
|
|
int reg;
|
|
enum mmio_write_type type;
|
|
union {
|
|
uint8_t bdata;
|
|
uint16_t wdata;
|
|
uint32_t ldata;
|
|
};
|
|
};
|
|
|
|
static int undo_mmio_write(void *p)
|
|
{
|
|
struct undo_mmio_write_data *data = p;
|
|
msg_pdbg("Restoring MMIO space at %p\n", data->addr);
|
|
switch (data->type) {
|
|
case mmio_write_type_b:
|
|
mmio_writeb(data->bdata, data->addr);
|
|
break;
|
|
case mmio_write_type_w:
|
|
mmio_writew(data->wdata, data->addr);
|
|
break;
|
|
case mmio_write_type_l:
|
|
mmio_writel(data->ldata, data->addr);
|
|
break;
|
|
}
|
|
/* p was allocated in register_undo_mmio_write. */
|
|
free(p);
|
|
return 0;
|
|
}
|
|
|
|
#define register_undo_mmio_write(a, c) \
|
|
{ \
|
|
struct undo_mmio_write_data *undo_mmio_write_data; \
|
|
undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data)); \
|
|
if (!undo_mmio_write_data) { \
|
|
msg_gerr("Out of memory!\n"); \
|
|
exit(1); \
|
|
} \
|
|
undo_mmio_write_data->addr = a; \
|
|
undo_mmio_write_data->type = mmio_write_type_##c; \
|
|
undo_mmio_write_data->c##data = mmio_read##c(a); \
|
|
register_shutdown(undo_mmio_write, undo_mmio_write_data); \
|
|
}
|
|
|
|
#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b)
|
|
#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w)
|
|
#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l)
|
|
|
|
void rmmio_writeb(uint8_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writeb(addr);
|
|
mmio_writeb(val, addr);
|
|
}
|
|
|
|
void rmmio_writew(uint16_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writew(addr);
|
|
mmio_writew(val, addr);
|
|
}
|
|
|
|
void rmmio_writel(uint32_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writel(addr);
|
|
mmio_writel(val, addr);
|
|
}
|
|
|
|
void rmmio_le_writeb(uint8_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writeb(addr);
|
|
mmio_le_writeb(val, addr);
|
|
}
|
|
|
|
void rmmio_le_writew(uint16_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writew(addr);
|
|
mmio_le_writew(val, addr);
|
|
}
|
|
|
|
void rmmio_le_writel(uint32_t val, void *addr)
|
|
{
|
|
register_undo_mmio_writel(addr);
|
|
mmio_le_writel(val, addr);
|
|
}
|
|
|
|
void rmmio_valb(void *addr)
|
|
{
|
|
register_undo_mmio_writeb(addr);
|
|
}
|
|
|
|
void rmmio_valw(void *addr)
|
|
{
|
|
register_undo_mmio_writew(addr);
|
|
}
|
|
|
|
void rmmio_vall(void *addr)
|
|
{
|
|
register_undo_mmio_writel(addr);
|
|
}
|