1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-27 07:02:34 +02:00
flashrom/spi25.c
sibradzic a3519561bd flashchips: port S25FS(128S) chip from chromiumos
This may seem too big just to support yet another flash chip, but in
reality it brings support for whole new family of S25FS
Spansion/Cypress flash chips. These chips require handling of some
special status registers for erasing or writing, with very specific
timing checks in place.

For example, WIP status bit will remain being set to 1 if erase or
programming errors occur, and in that case chip 'software reset' has
to be performed otherwise the chip will remain unresponsive to all
further commands. Also, special CR3NV register (Configuration Register
3 Nonvolatile) status bits needs to be read and set by using RDAR
(ReaD Any Register) and WRAR (WRite Any Register) OP commands, and
these states are needed to determine which type of reset feature is
enabled at the time (legacy or S25FS type) in the first place,
determine whether Uniform or Hybrid sector architecture is used
at the time, or set programming buffer address wrap point (256 or 512
bytes). Furthermore, S25FS chip status register has to be restored to
its original state (hence that ugly CHIP_RESTORE_CALLBACK) following
erasing or writing, failing to do so may result in host being unable
to access data on the chip at all.

Finally, although this brings support for the whole family of chips,
I only have one such chip to do the actual testing, S25FS128S (Small
Sectors), which I had fully tested on ch341a and FT4232H programmers,
with confirmed working probe, read, erase and write.

Full summary of changes are here:

flashchips:
  add new flashchip sctructure property:
    .reset
  add chip definitions:
    S25FS128S Large Sectors
    S25FS128S Small Sectors

flash:
  add macro (chip_restore_func_data call-back):
    CHIP_RESTORE_CALLBACK

flashrom:
  add struct:
    chip_restore_func_data
  add call-back function:
    register_chip_restore

spi:
  add OP codes:
    CMD_RDAR, CMD_WRAR, CMD_WRAR_LEN, CMD_RSTEN, CMD_RST
  add register bit function definitions:
    CR3NV_ADDR, CR3NV_20H_NV
  add timers:
    T_W, T_RPH, T_SE

spi25:
  refactor (based on chromiumos implementation) function:
    spi_poll_wip
  port these functions from chromiumos:
    probe_spi_big_spansion
    s25fs_software_reset
    s25f_legacy_software_reset
    s25fs_block_erase_d8

spi25_statusreg:
  port these functions from chromiumos:
    spi_restore_status
    s25fs_read_cr
    s25fs_write_cr
    s25fs_restore_cr3nv

Most of the ported functions are originally from s25f.c found at
https://chromium.googlesource.com/chromiumos/third_party/flashrom
with exception of spi_restore_status which is defined in
spi25_statusreg.c. The rest of macros and OP codes are defined in
same files as in this commit.

Change-Id: If659290874a4b9db6e71256bdef382d31b288e72
Signed-off-by: Samir Ibradzic <sibradzic@gmail.com>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/39822
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Edward O'Callaghan <quasisec@chromium.org>
2020-04-22 06:06:36 +00:00

1032 lines
28 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
* Copyright (C) 2008 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Contains the common SPI chip driver functions
*/
#include <stddef.h>
#include <string.h>
#include <stdbool.h>
#include "flash.h"
#include "flashchips.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "hwaccess.h"
#include "spi.h"
static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes)
{
static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
int ret;
int i;
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
if (ret)
return ret;
msg_cspew("RDID returned");
for (i = 0; i < bytes; i++)
msg_cspew(" 0x%02x", readarr[i]);
msg_cspew(". ");
return 0;
}
static int spi_rems(struct flashctx *flash, unsigned char *readarr)
{
static const unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, };
int ret;
ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
if (ret)
return ret;
msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]);
return 0;
}
static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes)
{
static const unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, };
int ret;
int i;
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
if (ret)
return ret;
msg_cspew("RES returned");
for (i = 0; i < bytes; i++)
msg_cspew(" 0x%02x", readarr[i]);
msg_cspew(". ");
return 0;
}
int spi_write_enable(struct flashctx *flash)
{
static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
int result;
/* Send WREN (Write Enable) */
result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
if (result)
msg_cerr("%s failed\n", __func__);
return result;
}
int spi_write_disable(struct flashctx *flash)
{
static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
/* Send WRDI (Write Disable) */
return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
}
static int probe_spi_rdid_generic(struct flashctx *flash, int bytes)
{
const struct flashchip *chip = flash->chip;
unsigned char readarr[4];
uint32_t id1;
uint32_t id2;
const int ret = spi_rdid(flash, readarr, bytes);
if (ret == SPI_INVALID_LENGTH)
msg_cinfo("%d byte RDID not supported on this SPI controller\n", bytes);
if (ret)
return 0;
if (!oddparity(readarr[0]))
msg_cdbg("RDID byte 0 parity violation. ");
/* Check if this is a continuation vendor ID.
* FIXME: Handle continuation device IDs.
*/
if (readarr[0] == 0x7f) {
if (!oddparity(readarr[1]))
msg_cdbg("RDID byte 1 parity violation. ");
id1 = (readarr[0] << 8) | readarr[1];
id2 = readarr[2];
if (bytes > 3) {
id2 <<= 8;
id2 |= readarr[3];
}
} else {
id1 = readarr[0];
id2 = (readarr[1] << 8) | readarr[2];
}
msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
if (id1 == chip->manufacture_id && id2 == chip->model_id)
return 1;
/* Test if this is a pure vendor match. */
if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
return 1;
/* Test if there is any vendor ID. */
if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00)
return 1;
return 0;
}
int probe_spi_rdid(struct flashctx *flash)
{
return probe_spi_rdid_generic(flash, 3);
}
int probe_spi_rdid4(struct flashctx *flash)
{
return probe_spi_rdid_generic(flash, 4);
}
int probe_spi_rems(struct flashctx *flash)
{
const struct flashchip *chip = flash->chip;
unsigned char readarr[JEDEC_REMS_INSIZE];
uint32_t id1, id2;
if (spi_rems(flash, readarr)) {
return 0;
}
id1 = readarr[0];
id2 = readarr[1];
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
if (id1 == chip->manufacture_id && id2 == chip->model_id)
return 1;
/* Test if this is a pure vendor match. */
if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
return 1;
/* Test if there is any vendor ID. */
if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00)
return 1;
return 0;
}
int probe_spi_res1(struct flashctx *flash)
{
static const unsigned char allff[] = {0xff, 0xff, 0xff};
static const unsigned char all00[] = {0x00, 0x00, 0x00};
unsigned char readarr[3];
uint32_t id2;
/* We only want one-byte RES if RDID and REMS are unusable. */
/* Check if RDID is usable and does not return 0xff 0xff 0xff or
* 0x00 0x00 0x00. In that case, RES is pointless.
*/
if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) &&
memcmp(readarr, all00, 3)) {
msg_cdbg("Ignoring RES in favour of RDID.\n");
return 0;
}
/* Check if REMS is usable and does not return 0xff 0xff or
* 0x00 0x00. In that case, RES is pointless.
*/
if (!spi_rems(flash, readarr) &&
memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
msg_cdbg("Ignoring RES in favour of REMS.\n");
return 0;
}
if (spi_res(flash, readarr, 1)) {
return 0;
}
id2 = readarr[0];
msg_cdbg("%s: id 0x%x\n", __func__, id2);
if (id2 != flash->chip->model_id)
return 0;
return 1;
}
int probe_spi_res2(struct flashctx *flash)
{
unsigned char readarr[2];
uint32_t id1, id2;
if (spi_res(flash, readarr, 2)) {
return 0;
}
id1 = readarr[0];
id2 = readarr[1];
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
return 0;
return 1;
}
int probe_spi_res3(struct flashctx *flash)
{
unsigned char readarr[3];
uint32_t id1, id2;
if (spi_res(flash, readarr, 3)) {
return 0;
}
id1 = (readarr[0] << 8) | readarr[1];
id2 = readarr[2];
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
return 0;
return 1;
}
/* Only used for some Atmel chips. */
int probe_spi_at25f(struct flashctx *flash)
{
static const unsigned char cmd[AT25F_RDID_OUTSIZE] = { AT25F_RDID };
unsigned char readarr[AT25F_RDID_INSIZE];
uint32_t id1;
uint32_t id2;
if (spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr))
return 0;
id1 = readarr[0];
id2 = readarr[1];
msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
if (id1 == flash->chip->manufacture_id && id2 == flash->chip->model_id)
return 1;
return 0;
}
/* Used for probing 'big' Spansion/Cypress S25FS chips */
int probe_spi_big_spansion(struct flashctx *flash)
{
static const unsigned char cmd = JEDEC_RDID;
int ret;
unsigned char dev_id[6]; /* We care only about 6 first bytes */
ret = spi_send_command(flash, sizeof(cmd), sizeof(dev_id), &cmd, dev_id);
if (!ret) {
unsigned long i;
for (i = 0; i < sizeof(dev_id); i++)
msg_gdbg(" 0x%02x", dev_id[i]);
msg_gdbg(".\n");
if (dev_id[0] == flash->chip->manufacture_id) {
union {
uint8_t array[4];
uint32_t whole;
} model_id;
/*
* The structure of the RDID output is as follows:
*
* offset value meaning
* 00h 01h Manufacturer ID for Spansion
* 01h 20h 128 Mb capacity
* 01h 02h 256 Mb capacity
* 02h 18h 128 Mb capacity
* 02h 19h 256 Mb capacity
* 03h 4Dh Full size of the RDID output (ignored)
* 04h 00h FS: 256-kB physical sectors
* 04h 01h FS: 64-kB physical sectors
* 04h 00h FL: 256-kB physical sectors
* 04h 01h FL: Mix of 64-kB and 4KB overlayed sectors
* 05h 80h FL family
* 05h 81h FS family
*
* Need to use bytes 1, 2, 4, and 5 to properly identify one of eight
* possible chips:
*
* 2 types * 2 possible sizes * 2 possible sector layouts
*
*/
memcpy(model_id.array, dev_id + 1, 2);
memcpy(model_id.array + 2, dev_id + 4, 2);
if (be_to_cpu32(model_id.whole) == flash->chip->model_id)
return 1;
}
}
return 0;
}
/* Used for Spansion/Cypress S25F chips */
static int s25f_legacy_software_reset(struct flashctx *flash)
{
int result;
struct spi_command cmds[] = {
{
.writecnt = 1,
.writearr = (const unsigned char[]){ CMD_RSTEN },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 1,
.writearr = (const unsigned char[]){ 0xf0 },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
result = spi_send_multicommand(flash, cmds);
if (result) {
msg_cerr("%s failed during command execution\n", __func__);
return result;
}
/* Reset takes 35us according to data-sheet, double that for safety */
programmer_delay(T_RPH * 2);
return 0;
}
/* Only for Spansion S25FS chips, where legacy reset is disabled by default */
int s25fs_software_reset(struct flashctx *flash)
{
int result;
struct spi_command cmds[] = {
{
.writecnt = 1,
.writearr = (const unsigned char[]){ CMD_RSTEN },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 1,
.writearr = (const unsigned char[]){ CMD_RST },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
msg_cdbg("Force resetting SPI chip.\n");
result = spi_send_multicommand(flash, cmds);
if (result) {
msg_cerr("%s failed during command execution\n", __func__);
return result;
}
programmer_delay(T_RPH * 2);
return 0;
}
int spi_poll_wip(struct flashctx *const flash, const unsigned int poll_delay)
{
uint8_t status_reg = spi_read_status_register(flash);
/* FIXME: We don't time out. */
while (status_reg & SPI_SR_WIP) {
/*
* The WIP bit on S25F chips remains set to 1 if erase or
* programming errors occur, so we must check for those
* errors here. If an error is encountered, do a software
* reset to clear WIP and other volatile bits, otherwise
* the chip will be unresponsive to further commands.
*/
if (status_reg & SPI_SR_ERA_ERR) {
msg_cerr("Erase error occurred\n");
s25f_legacy_software_reset(flash);
return -1;
}
if (status_reg & (1 << 6)) {
msg_cerr("Programming error occurred\n");
s25f_legacy_software_reset(flash);
return -1;
}
programmer_delay(poll_delay);
status_reg = spi_read_status_register(flash);
}
return 0;
}
/**
* Execute WREN plus another one byte `op`, optionally poll WIP afterwards.
*
* @param flash the flash chip's context
* @param op the operation to execute
* @param poll_delay interval in us for polling WIP, don't poll if zero
* @return 0 on success, non-zero otherwise
*/
static int spi_simple_write_cmd(struct flashctx *const flash, const uint8_t op, const unsigned int poll_delay)
{
struct spi_command cmds[] = {
{
.readarr = 0,
.writecnt = 1,
.writearr = (const unsigned char[]){ JEDEC_WREN },
}, {
.readarr = 0,
.writecnt = 1,
.writearr = (const unsigned char[]){ op },
},
NULL_SPI_CMD,
};
const int result = spi_send_multicommand(flash, cmds);
if (result)
msg_cerr("%s failed during command execution\n", __func__);
const int status = poll_delay ? spi_poll_wip(flash, poll_delay) : 0;
return result ? result : status;
}
static int spi_write_extended_address_register(struct flashctx *const flash, const uint8_t regdata)
{
const uint8_t op = flash->chip->wrea_override ? : JEDEC_WRITE_EXT_ADDR_REG;
struct spi_command cmds[] = {
{
.readarr = 0,
.writecnt = 1,
.writearr = (const unsigned char[]){ JEDEC_WREN },
}, {
.readarr = 0,
.writecnt = 2,
.writearr = (const unsigned char[]){ op, regdata },
},
NULL_SPI_CMD,
};
const int result = spi_send_multicommand(flash, cmds);
if (result)
msg_cerr("%s failed during command execution\n", __func__);
return result;
}
int spi_set_extended_address(struct flashctx *const flash, const uint8_t addr_high)
{
if (flash->address_high_byte != addr_high &&
spi_write_extended_address_register(flash, addr_high))
return -1;
flash->address_high_byte = addr_high;
return 0;
}
static int spi_prepare_address(struct flashctx *const flash, uint8_t cmd_buf[],
const bool native_4ba, const unsigned int addr)
{
if (native_4ba || flash->in_4ba_mode) {
if (!spi_master_4ba(flash)) {
msg_cwarn("4-byte address requested but master can't handle 4-byte addresses.\n");
return -1;
}
cmd_buf[1] = (addr >> 24) & 0xff;
cmd_buf[2] = (addr >> 16) & 0xff;
cmd_buf[3] = (addr >> 8) & 0xff;
cmd_buf[4] = (addr >> 0) & 0xff;
return 4;
} else {
if (flash->chip->feature_bits & FEATURE_4BA_EXT_ADDR) {
if (spi_set_extended_address(flash, addr >> 24))
return -1;
} else if (addr >> 24) {
msg_cerr("Can't handle 4-byte address for opcode '0x%02x'\n"
"with this chip/programmer combination.\n", cmd_buf[0]);
return -1;
}
cmd_buf[1] = (addr >> 16) & 0xff;
cmd_buf[2] = (addr >> 8) & 0xff;
cmd_buf[3] = (addr >> 0) & 0xff;
return 3;
}
}
/**
* Execute WREN plus another `op` that takes an address and
* optional data, poll WIP afterwards.
*
* @param flash the flash chip's context
* @param op the operation to execute
* @param native_4ba whether `op` always takes a 4-byte address
* @param addr the address parameter to `op`
* @param out_bytes bytes to send after the address,
* may be NULL if and only if `out_bytes` is 0
* @param out_bytes number of bytes to send, 256 at most, may be zero
* @param poll_delay interval in us for polling WIP
* @return 0 on success, non-zero otherwise
*/
static int spi_write_cmd(struct flashctx *const flash, const uint8_t op,
const bool native_4ba, const unsigned int addr,
const uint8_t *const out_bytes, const size_t out_len,
const unsigned int poll_delay)
{
uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN + 256];
struct spi_command cmds[] = {
{
.readarr = 0,
.writecnt = 1,
.writearr = (const unsigned char[]){ JEDEC_WREN },
}, {
.readarr = 0,
.writearr = cmd,
},
NULL_SPI_CMD,
};
cmd[0] = op;
const int addr_len = spi_prepare_address(flash, cmd, native_4ba, addr);
if (addr_len < 0)
return 1;
if (1 + addr_len + out_len > sizeof(cmd)) {
msg_cerr("%s called for too long a write\n", __func__);
return 1;
}
memcpy(cmd + 1 + addr_len, out_bytes, out_len);
cmds[1].writecnt = 1 + addr_len + out_len;
const int result = spi_send_multicommand(flash, cmds);
if (result)
msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);
const int status = spi_poll_wip(flash, poll_delay);
return result ? result : status;
}
static int spi_chip_erase_60(struct flashctx *flash)
{
/* This usually takes 1-85s, so wait in 1s steps. */
return spi_simple_write_cmd(flash, 0x60, 1000 * 1000);
}
static int spi_chip_erase_62(struct flashctx *flash)
{
/* This usually takes 2-5s, so wait in 100ms steps. */
return spi_simple_write_cmd(flash, 0x62, 100 * 1000);
}
static int spi_chip_erase_c7(struct flashctx *flash)
{
/* This usually takes 1-85s, so wait in 1s steps. */
return spi_simple_write_cmd(flash, 0xc7, 1000 * 1000);
}
int spi_block_erase_52(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
/* This usually takes 100-4000ms, so wait in 100ms steps. */
return spi_write_cmd(flash, 0x52, false, addr, NULL, 0, 100 * 1000);
}
/* Block size is usually
* 32M (one die) for Micron
*/
int spi_block_erase_c4(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This usually takes 240-480s, so wait in 500ms steps. */
return spi_write_cmd(flash, 0xc4, false, addr, NULL, 0, 500 * 1000);
}
/* Block size is usually
* 64k for Macronix
* 32k for SST
* 4-32k non-uniform for EON
*/
int spi_block_erase_d8(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
/* This usually takes 100-4000ms, so wait in 100ms steps. */
return spi_write_cmd(flash, 0xd8, false, addr, NULL, 0, 100 * 1000);
}
/* Used on Spansion/Cypress S25FS chips */
int s25fs_block_erase_d8(struct flashctx *flash,
unsigned int addr, unsigned int blocklen)
{
unsigned char cfg;
int result;
static int cr3nv_checked = 0;
struct spi_command erase_cmds[] = {
{
.writecnt = JEDEC_WREN_OUTSIZE,
.writearr = (const unsigned char[]){ JEDEC_WREN },
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = JEDEC_BE_D8_OUTSIZE,
.writearr = (const unsigned char[]){
JEDEC_BE_D8,
(addr >> 16) & 0xff,
(addr >> 8) & 0xff,
(addr & 0xff)
},
.readcnt = 0,
.readarr = NULL,
}, {
.writecnt = 0,
.writearr = NULL,
.readcnt = 0,
.readarr = NULL,
}};
/* Check if hybrid sector architecture is in use and, if so,
* switch to uniform sectors. */
if (!cr3nv_checked) {
cfg = s25fs_read_cr(flash, CR3NV_ADDR);
if (!(cfg & CR3NV_20H_NV)) {
s25fs_write_cr(flash, CR3NV_ADDR, cfg | CR3NV_20H_NV);
s25fs_software_reset(flash);
cfg = s25fs_read_cr(flash, CR3NV_ADDR);
if (!(cfg & CR3NV_20H_NV)) {
msg_cerr("%s: Unable to enable uniform "
"block sizes.\n", __func__);
return 1;
}
msg_cdbg("\n%s: CR3NV updated (0x%02x -> 0x%02x)\n",
__func__, cfg,
s25fs_read_cr(flash, CR3NV_ADDR));
/* Restore CR3V when flashrom exits */
register_chip_restore(s25fs_restore_cr3nv, flash, cfg);
}
cr3nv_checked = 1;
}
result = spi_send_multicommand(flash, erase_cmds);
if (result) {
msg_cerr("%s failed during command execution at address 0x%x\n",
__func__, addr);
return result;
}
programmer_delay(T_SE);
return spi_poll_wip(flash, 1000 * 10);
}
/* Block size is usually
* 4k for PMC
*/
int spi_block_erase_d7(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
/* This usually takes 100-4000ms, so wait in 100ms steps. */
return spi_write_cmd(flash, 0xd7, false, addr, NULL, 0, 100 * 1000);
}
/* Page erase (usually 256B blocks) */
int spi_block_erase_db(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This takes up to 20ms usually (on worn out devices
up to the 0.5s range), so wait in 1ms steps. */
return spi_write_cmd(flash, 0xdb, false, addr, NULL, 0, 1 * 1000);
}
/* Sector size is usually 4k, though Macronix eliteflash has 64k */
int spi_block_erase_20(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
/* This usually takes 15-800ms, so wait in 10ms steps. */
return spi_write_cmd(flash, 0x20, false, addr, NULL, 0, 10 * 1000);
}
int spi_block_erase_50(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This usually takes 10ms, so wait in 1ms steps. */
return spi_write_cmd(flash, 0x50, false, addr, NULL, 0, 1 * 1000);
}
int spi_block_erase_81(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This usually takes 8ms, so wait in 1ms steps. */
return spi_write_cmd(flash, 0x81, false, addr, NULL, 0, 1 * 1000);
}
int spi_block_erase_60(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
msg_cerr("%s called with incorrect arguments\n",
__func__);
return -1;
}
return spi_chip_erase_60(flash);
}
int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
msg_cerr("%s called with incorrect arguments\n",
__func__);
return -1;
}
return spi_chip_erase_62(flash);
}
int spi_block_erase_c7(struct flashctx *flash, unsigned int addr,
unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
msg_cerr("%s called with incorrect arguments\n",
__func__);
return -1;
}
return spi_chip_erase_c7(flash);
}
/* Erase 4 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
int spi_block_erase_21(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This usually takes 15-800ms, so wait in 10ms steps. */
return spi_write_cmd(flash, 0x21, true, addr, NULL, 0, 10 * 1000);
}
/* Erase 32 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
int spi_block_erase_5c(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This usually takes 100-4000ms, so wait in 100ms steps. */
return spi_write_cmd(flash, 0x5c, true, addr, NULL, 0, 100 * 1000);
}
/* Erase 64 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
int spi_block_erase_dc(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
/* This usually takes 100-4000ms, so wait in 100ms steps. */
return spi_write_cmd(flash, 0xdc, true, addr, NULL, 0, 100 * 1000);
}
erasefunc_t *spi_get_erasefn_from_opcode(uint8_t opcode)
{
switch(opcode){
case 0xff:
case 0x00:
/* Not specified, assuming "not supported". */
return NULL;
case 0x20:
return &spi_block_erase_20;
case 0x21:
return &spi_block_erase_21;
case 0x50:
return &spi_block_erase_50;
case 0x52:
return &spi_block_erase_52;
case 0x5c:
return &spi_block_erase_5c;
case 0x60:
return &spi_block_erase_60;
case 0x62:
return &spi_block_erase_62;
case 0x81:
return &spi_block_erase_81;
case 0xc4:
return &spi_block_erase_c4;
case 0xc7:
return &spi_block_erase_c7;
case 0xd7:
return &spi_block_erase_d7;
case 0xd8:
return &spi_block_erase_d8;
case 0xdb:
return &spi_block_erase_db;
case 0xdc:
return &spi_block_erase_dc;
default:
msg_cinfo("%s: unknown erase opcode (0x%02x). Please report "
"this at flashrom@flashrom.org\n", __func__, opcode);
return NULL;
}
}
static int spi_nbyte_program(struct flashctx *flash, unsigned int addr, const uint8_t *bytes, unsigned int len)
{
const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_WRITE && spi_master_4ba(flash);
const uint8_t op = native_4ba ? JEDEC_BYTE_PROGRAM_4BA : JEDEC_BYTE_PROGRAM;
return spi_write_cmd(flash, op, native_4ba, addr, bytes, len, 10);
}
int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes,
unsigned int len)
{
const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_READ && spi_master_4ba(flash);
uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN] = { native_4ba ? JEDEC_READ_4BA : JEDEC_READ, };
const int addr_len = spi_prepare_address(flash, cmd, native_4ba, address);
if (addr_len < 0)
return 1;
/* Send Read */
return spi_send_command(flash, 1 + addr_len, len, cmd, bytes);
}
/*
* Read a part of the flash chip.
* Data is read in chunks with a maximum size of chunksize.
*/
int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
unsigned int len, unsigned int chunksize)
{
int ret;
size_t to_read;
for (; len; len -= to_read, buf += to_read, start += to_read) {
to_read = min(chunksize, len);
ret = spi_nbyte_read(flash, start, buf, to_read);
if (ret)
return ret;
}
return 0;
}
/*
* Write a part of the flash chip.
* FIXME: Use the chunk code from Michael Karcher instead.
* Each page is written separately in chunks with a maximum size of chunksize.
*/
int spi_write_chunked(struct flashctx *flash, const uint8_t *buf, unsigned int start,
unsigned int len, unsigned int chunksize)
{
unsigned int i, j, starthere, lenhere, towrite;
/* FIXME: page_size is the wrong variable. We need max_writechunk_size
* in struct flashctx to do this properly. All chips using
* spi_chip_write_256 have page_size set to max_writechunk_size, so
* we're OK for now.
*/
unsigned int page_size = flash->chip->page_size;
/* Warning: This loop has a very unusual condition and body.
* The loop needs to go through each page with at least one affected
* byte. The lowest page number is (start / page_size) since that
* division rounds down. The highest page number we want is the page
* where the last byte of the range lives. That last byte has the
* address (start + len - 1), thus the highest page number is
* (start + len - 1) / page_size. Since we want to include that last
* page as well, the loop condition uses <=.
*/
for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
/* Byte position of the first byte in the range in this page. */
/* starthere is an offset to the base address of the chip. */
starthere = max(start, i * page_size);
/* Length of bytes in the range in this page. */
lenhere = min(start + len, (i + 1) * page_size) - starthere;
for (j = 0; j < lenhere; j += chunksize) {
int rc;
towrite = min(chunksize, lenhere - j);
rc = spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite);
if (rc)
return rc;
}
}
return 0;
}
/*
* Program chip using byte programming. (SLOW!)
* This is for chips which can only handle one byte writes
* and for chips where memory mapped programming is impossible
* (e.g. due to size constraints in IT87* for over 512 kB)
*/
/* real chunksize is 1, logical chunksize is 1 */
int spi_chip_write_1(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
unsigned int i;
for (i = start; i < start + len; i++) {
if (spi_nbyte_program(flash, i, buf + i - start, 1))
return 1;
}
return 0;
}
int default_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
uint32_t pos = start;
int result;
unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
JEDEC_AAI_WORD_PROGRAM,
};
/* The even start address and even length requirements can be either
* honored outside this function, or we can call spi_byte_program
* for the first and/or last byte and use AAI for the rest.
* FIXME: Move this to generic code.
*/
/* The data sheet requires a start address with the low bit cleared. */
if (start % 2) {
msg_cerr("%s: start address not even! Please report a bug at "
"flashrom@flashrom.org\n", __func__);
if (spi_chip_write_1(flash, buf, start, start % 2))
return SPI_GENERIC_ERROR;
pos += start % 2;
/* Do not return an error for now. */
//return SPI_GENERIC_ERROR;
}
/* The data sheet requires total AAI write length to be even. */
if (len % 2) {
msg_cerr("%s: total write length not even! Please report a "
"bug at flashrom@flashrom.org\n", __func__);
/* Do not return an error for now. */
//return SPI_GENERIC_ERROR;
}
result = spi_write_cmd(flash, JEDEC_AAI_WORD_PROGRAM, false, start, buf + pos - start, 2, 10);
if (result)
goto bailout;
/* We already wrote 2 bytes in the multicommand step. */
pos += 2;
/* Are there at least two more bytes to write? */
while (pos < start + len - 1) {
cmd[1] = buf[pos++ - start];
cmd[2] = buf[pos++ - start];
result = spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL);
if (result != 0) {
msg_cerr("%s failed during followup AAI command execution: %d\n", __func__, result);
goto bailout;
}
if (spi_poll_wip(flash, 10))
goto bailout;
}
/* Use WRDI to exit AAI mode. This needs to be done before issuing any other non-AAI command. */
result = spi_write_disable(flash);
if (result != 0) {
msg_cerr("%s failed to disable AAI mode.\n", __func__);
return SPI_GENERIC_ERROR;
}
/* Write remaining byte (if any). */
if (pos < start + len) {
if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
return SPI_GENERIC_ERROR;
}
return 0;
bailout:
result = spi_write_disable(flash);
if (result != 0)
msg_cerr("%s failed to disable AAI mode.\n", __func__);
return SPI_GENERIC_ERROR;
}
static int spi_enter_exit_4ba(struct flashctx *const flash, const bool enter)
{
const unsigned char cmd = enter ? JEDEC_ENTER_4_BYTE_ADDR_MODE : JEDEC_EXIT_4_BYTE_ADDR_MODE;
int ret = 1;
if (flash->chip->feature_bits & FEATURE_4BA_ENTER)
ret = spi_send_command(flash, sizeof(cmd), 0, &cmd, NULL);
else if (flash->chip->feature_bits & FEATURE_4BA_ENTER_WREN)
ret = spi_simple_write_cmd(flash, cmd, 0);
else if (flash->chip->feature_bits & FEATURE_4BA_ENTER_EAR7)
ret = spi_set_extended_address(flash, enter ? 0x80 : 0x00);
if (!ret)
flash->in_4ba_mode = enter;
return ret;
}
int spi_enter_4ba(struct flashctx *const flash)
{
return spi_enter_exit_4ba(flash, true);
}
int spi_exit_4ba(struct flashctx *flash)
{
return spi_enter_exit_4ba(flash, false);
}