mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-26 22:52:34 +02:00

Some vendors forget to disable regions properly and set their FRAP bits and FREG to 0. While not documented publicly this is being ignored by the chipset(s)[1] and hence flashrom should do so too. Without this patch flashrom prints a warning and disables writes. The check for i (region index) excludes the descriptor region which should not be becessary because specs suggest that the descriptor region should not be locked, but if vendors would follow the specs this patch would not have been necessary in the first place. [1]: http://www.flashrom.org/pipermail/flashrom/2012-May/009303.html Corresponding to flashrom svn r1587. Signed-off-by: Stefan Tauner <stefan.tauner@alumni.tuwien.ac.at> Acked-by: Stefan Tauner <stefan.tauner@alumni.tuwien.ac.at>
1896 lines
57 KiB
C
1896 lines
57 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com>
|
|
* Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com>
|
|
* Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com>
|
|
* Copyright (C) 2008 coresystems GmbH <info@coresystems.de>
|
|
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
|
|
* Copyright (C) 2011 Stefan Tauner
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include "flash.h"
|
|
#include "programmer.h"
|
|
#include "hwaccess.h"
|
|
#include "spi.h"
|
|
#include "ich_descriptors.h"
|
|
|
|
/* ICH9 controller register definition */
|
|
#define ICH9_REG_HSFS 0x04 /* 16 Bits Hardware Sequencing Flash Status */
|
|
#define HSFS_FDONE_OFF 0 /* 0: Flash Cycle Done */
|
|
#define HSFS_FDONE (0x1 << HSFS_FDONE_OFF)
|
|
#define HSFS_FCERR_OFF 1 /* 1: Flash Cycle Error */
|
|
#define HSFS_FCERR (0x1 << HSFS_FCERR_OFF)
|
|
#define HSFS_AEL_OFF 2 /* 2: Access Error Log */
|
|
#define HSFS_AEL (0x1 << HSFS_AEL_OFF)
|
|
#define HSFS_BERASE_OFF 3 /* 3-4: Block/Sector Erase Size */
|
|
#define HSFS_BERASE (0x3 << HSFS_BERASE_OFF)
|
|
#define HSFS_SCIP_OFF 5 /* 5: SPI Cycle In Progress */
|
|
#define HSFS_SCIP (0x1 << HSFS_SCIP_OFF)
|
|
/* 6-12: reserved */
|
|
#define HSFS_FDOPSS_OFF 13 /* 13: Flash Descriptor Override Pin-Strap Status */
|
|
#define HSFS_FDOPSS (0x1 << HSFS_FDOPSS_OFF)
|
|
#define HSFS_FDV_OFF 14 /* 14: Flash Descriptor Valid */
|
|
#define HSFS_FDV (0x1 << HSFS_FDV_OFF)
|
|
#define HSFS_FLOCKDN_OFF 15 /* 15: Flash Configuration Lock-Down */
|
|
#define HSFS_FLOCKDN (0x1 << HSFS_FLOCKDN_OFF)
|
|
|
|
#define ICH9_REG_HSFC 0x06 /* 16 Bits Hardware Sequencing Flash Control */
|
|
#define HSFC_FGO_OFF 0 /* 0: Flash Cycle Go */
|
|
#define HSFC_FGO (0x1 << HSFC_FGO_OFF)
|
|
#define HSFC_FCYCLE_OFF 1 /* 1-2: FLASH Cycle */
|
|
#define HSFC_FCYCLE (0x3 << HSFC_FCYCLE_OFF)
|
|
/* 3-7: reserved */
|
|
#define HSFC_FDBC_OFF 8 /* 8-13: Flash Data Byte Count */
|
|
#define HSFC_FDBC (0x3f << HSFC_FDBC_OFF)
|
|
/* 14: reserved */
|
|
#define HSFC_SME_OFF 15 /* 15: SPI SMI# Enable */
|
|
#define HSFC_SME (0x1 << HSFC_SME_OFF)
|
|
|
|
#define ICH9_REG_FADDR 0x08 /* 32 Bits */
|
|
#define ICH9_REG_FDATA0 0x10 /* 64 Bytes */
|
|
|
|
#define ICH9_REG_FRAP 0x50 /* 32 Bytes Flash Region Access Permissions */
|
|
#define ICH9_REG_FREG0 0x54 /* 32 Bytes Flash Region 0 */
|
|
|
|
#define ICH9_REG_PR0 0x74 /* 32 Bytes Protected Range 0 */
|
|
#define PR_WP_OFF 31 /* 31: write protection enable */
|
|
#define PR_RP_OFF 15 /* 15: read protection enable */
|
|
|
|
#define ICH9_REG_SSFS 0x90 /* 08 Bits */
|
|
#define SSFS_SCIP_OFF 0 /* SPI Cycle In Progress */
|
|
#define SSFS_SCIP (0x1 << SSFS_SCIP_OFF)
|
|
#define SSFS_FDONE_OFF 2 /* Cycle Done Status */
|
|
#define SSFS_FDONE (0x1 << SSFS_FDONE_OFF)
|
|
#define SSFS_FCERR_OFF 3 /* Flash Cycle Error */
|
|
#define SSFS_FCERR (0x1 << SSFS_FCERR_OFF)
|
|
#define SSFS_AEL_OFF 4 /* Access Error Log */
|
|
#define SSFS_AEL (0x1 << SSFS_AEL_OFF)
|
|
/* The following bits are reserved in SSFS: 1,5-7. */
|
|
#define SSFS_RESERVED_MASK 0x000000e2
|
|
|
|
#define ICH9_REG_SSFC 0x91 /* 24 Bits */
|
|
/* We combine SSFS and SSFC to one 32-bit word,
|
|
* therefore SSFC bits are off by 8. */
|
|
/* 0: reserved */
|
|
#define SSFC_SCGO_OFF (1 + 8) /* 1: SPI Cycle Go */
|
|
#define SSFC_SCGO (0x1 << SSFC_SCGO_OFF)
|
|
#define SSFC_ACS_OFF (2 + 8) /* 2: Atomic Cycle Sequence */
|
|
#define SSFC_ACS (0x1 << SSFC_ACS_OFF)
|
|
#define SSFC_SPOP_OFF (3 + 8) /* 3: Sequence Prefix Opcode Pointer */
|
|
#define SSFC_SPOP (0x1 << SSFC_SPOP_OFF)
|
|
#define SSFC_COP_OFF (4 + 8) /* 4-6: Cycle Opcode Pointer */
|
|
#define SSFC_COP (0x7 << SSFC_COP_OFF)
|
|
/* 7: reserved */
|
|
#define SSFC_DBC_OFF (8 + 8) /* 8-13: Data Byte Count */
|
|
#define SSFC_DBC (0x3f << SSFC_DBC_OFF)
|
|
#define SSFC_DS_OFF (14 + 8) /* 14: Data Cycle */
|
|
#define SSFC_DS (0x1 << SSFC_DS_OFF)
|
|
#define SSFC_SME_OFF (15 + 8) /* 15: SPI SMI# Enable */
|
|
#define SSFC_SME (0x1 << SSFC_SME_OFF)
|
|
#define SSFC_SCF_OFF (16 + 8) /* 16-18: SPI Cycle Frequency */
|
|
#define SSFC_SCF (0x7 << SSFC_SCF_OFF)
|
|
#define SSFC_SCF_20MHZ 0x00000000
|
|
#define SSFC_SCF_33MHZ 0x01000000
|
|
/* 19-23: reserved */
|
|
#define SSFC_RESERVED_MASK 0xf8008100
|
|
|
|
#define ICH9_REG_PREOP 0x94 /* 16 Bits */
|
|
#define ICH9_REG_OPTYPE 0x96 /* 16 Bits */
|
|
#define ICH9_REG_OPMENU 0x98 /* 64 Bits */
|
|
|
|
#define ICH9_REG_BBAR 0xA0 /* 32 Bits BIOS Base Address Configuration */
|
|
#define BBAR_MASK 0x00ffff00 /* 8-23: Bottom of System Flash */
|
|
|
|
#define ICH8_REG_VSCC 0xC1 /* 32 Bits Vendor Specific Component Capabilities */
|
|
#define ICH9_REG_LVSCC 0xC4 /* 32 Bits Host Lower Vendor Specific Component Capabilities */
|
|
#define ICH9_REG_UVSCC 0xC8 /* 32 Bits Host Upper Vendor Specific Component Capabilities */
|
|
/* The individual fields of the VSCC registers are defined in the file
|
|
* ich_descriptors.h. The reason is that the same layout is also used in the
|
|
* flash descriptor to define the properties of the different flash chips
|
|
* supported. The BIOS (or the ME?) is responsible to populate the ICH registers
|
|
* with the information from the descriptor on startup depending on the actual
|
|
* chip(s) detected. */
|
|
|
|
#define ICH9_REG_FPB 0xD0 /* 32 Bits Flash Partition Boundary */
|
|
#define FPB_FPBA_OFF 0 /* 0-12: Block/Sector Erase Size */
|
|
#define FPB_FPBA (0x1FFF << FPB_FPBA_OFF)
|
|
|
|
// ICH9R SPI commands
|
|
#define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0
|
|
#define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1
|
|
#define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2
|
|
#define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3
|
|
|
|
// ICH7 registers
|
|
#define ICH7_REG_SPIS 0x00 /* 16 Bits */
|
|
#define SPIS_SCIP 0x0001
|
|
#define SPIS_GRANT 0x0002
|
|
#define SPIS_CDS 0x0004
|
|
#define SPIS_FCERR 0x0008
|
|
#define SPIS_RESERVED_MASK 0x7ff0
|
|
|
|
/* VIA SPI is compatible with ICH7, but maxdata
|
|
to transfer is 16 bytes.
|
|
|
|
DATA byte count on ICH7 is 8:13, on VIA 8:11
|
|
|
|
bit 12 is port select CS0 CS1
|
|
bit 13 is FAST READ enable
|
|
bit 7 is used with fast read and one shot controls CS de-assert?
|
|
*/
|
|
|
|
#define ICH7_REG_SPIC 0x02 /* 16 Bits */
|
|
#define SPIC_SCGO 0x0002
|
|
#define SPIC_ACS 0x0004
|
|
#define SPIC_SPOP 0x0008
|
|
#define SPIC_DS 0x4000
|
|
|
|
#define ICH7_REG_SPIA 0x04 /* 32 Bits */
|
|
#define ICH7_REG_SPID0 0x08 /* 64 Bytes */
|
|
#define ICH7_REG_PREOP 0x54 /* 16 Bits */
|
|
#define ICH7_REG_OPTYPE 0x56 /* 16 Bits */
|
|
#define ICH7_REG_OPMENU 0x58 /* 64 Bits */
|
|
|
|
/* ICH SPI configuration lock-down. May be set during chipset enabling. */
|
|
static int ichspi_lock = 0;
|
|
|
|
static enum ich_chipset ich_generation = CHIPSET_ICH_UNKNOWN;
|
|
uint32_t ichspi_bbar = 0;
|
|
|
|
static void *ich_spibar = NULL;
|
|
|
|
typedef struct _OPCODE {
|
|
uint8_t opcode; //This commands spi opcode
|
|
uint8_t spi_type; //This commands spi type
|
|
uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1
|
|
} OPCODE;
|
|
|
|
/* Suggested opcode definition:
|
|
* Preop 1: Write Enable
|
|
* Preop 2: Write Status register enable
|
|
*
|
|
* OP 0: Write address
|
|
* OP 1: Read Address
|
|
* OP 2: ERASE block
|
|
* OP 3: Read Status register
|
|
* OP 4: Read ID
|
|
* OP 5: Write Status register
|
|
* OP 6: chip private (read JEDEC id)
|
|
* OP 7: Chip erase
|
|
*/
|
|
typedef struct _OPCODES {
|
|
uint8_t preop[2];
|
|
OPCODE opcode[8];
|
|
} OPCODES;
|
|
|
|
static OPCODES *curopcodes = NULL;
|
|
|
|
/* HW access functions */
|
|
static uint32_t REGREAD32(int X)
|
|
{
|
|
return mmio_readl(ich_spibar + X);
|
|
}
|
|
|
|
static uint16_t REGREAD16(int X)
|
|
{
|
|
return mmio_readw(ich_spibar + X);
|
|
}
|
|
|
|
static uint16_t REGREAD8(int X)
|
|
{
|
|
return mmio_readb(ich_spibar + X);
|
|
}
|
|
|
|
#define REGWRITE32(off, val) mmio_writel(val, ich_spibar+(off))
|
|
#define REGWRITE16(off, val) mmio_writew(val, ich_spibar+(off))
|
|
#define REGWRITE8(off, val) mmio_writeb(val, ich_spibar+(off))
|
|
|
|
/* Common SPI functions */
|
|
static int find_opcode(OPCODES *op, uint8_t opcode);
|
|
static int find_preop(OPCODES *op, uint8_t preop);
|
|
static int generate_opcodes(OPCODES * op);
|
|
static int program_opcodes(OPCODES *op, int enable_undo);
|
|
static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset,
|
|
uint8_t datalength, uint8_t * data);
|
|
|
|
/* for pairing opcodes with their required preop */
|
|
struct preop_opcode_pair {
|
|
uint8_t preop;
|
|
uint8_t opcode;
|
|
};
|
|
|
|
/* List of opcodes which need preopcodes and matching preopcodes. Unused. */
|
|
const struct preop_opcode_pair pops[] = {
|
|
{JEDEC_WREN, JEDEC_BYTE_PROGRAM},
|
|
{JEDEC_WREN, JEDEC_SE}, /* sector erase */
|
|
{JEDEC_WREN, JEDEC_BE_52}, /* block erase */
|
|
{JEDEC_WREN, JEDEC_BE_D8}, /* block erase */
|
|
{JEDEC_WREN, JEDEC_CE_60}, /* chip erase */
|
|
{JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */
|
|
/* FIXME: WRSR requires either EWSR or WREN depending on chip type. */
|
|
{JEDEC_WREN, JEDEC_WRSR},
|
|
{JEDEC_EWSR, JEDEC_WRSR},
|
|
{0,}
|
|
};
|
|
|
|
/* Reasonable default configuration. Needs ad-hoc modifications if we
|
|
* encounter unlisted opcodes. Fun.
|
|
*/
|
|
static OPCODES O_ST_M25P = {
|
|
{
|
|
JEDEC_WREN,
|
|
JEDEC_EWSR,
|
|
},
|
|
{
|
|
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
|
|
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
|
|
{JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
|
|
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
|
|
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
|
|
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
|
|
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
|
|
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
|
|
}
|
|
};
|
|
|
|
/* List of opcodes with their corresponding spi_type
|
|
* It is used to reprogram the chipset OPCODE table on-the-fly if an opcode
|
|
* is needed which is currently not in the chipset OPCODE table
|
|
*/
|
|
static OPCODE POSSIBLE_OPCODES[] = {
|
|
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
|
|
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
|
|
{JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
|
|
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
|
|
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
|
|
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
|
|
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
|
|
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
|
|
{JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Sector erase
|
|
{JEDEC_BE_52, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Block erase
|
|
{JEDEC_AAI_WORD_PROGRAM, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Auto Address Increment
|
|
};
|
|
|
|
static OPCODES O_EXISTING = {};
|
|
|
|
/* pretty printing functions */
|
|
static void prettyprint_opcodes(OPCODES *ops)
|
|
{
|
|
OPCODE oc;
|
|
const char *t;
|
|
const char *a;
|
|
uint8_t i;
|
|
static const char *const spi_type[4] = {
|
|
"read w/o addr",
|
|
"write w/o addr",
|
|
"read w/ addr",
|
|
"write w/ addr"
|
|
};
|
|
static const char *const atomic_type[3] = {
|
|
"none",
|
|
" 0 ",
|
|
" 1 "
|
|
};
|
|
|
|
if (ops == NULL)
|
|
return;
|
|
|
|
msg_pdbg2(" OP Type Pre-OP\n");
|
|
for (i = 0; i < 8; i++) {
|
|
oc = ops->opcode[i];
|
|
t = (oc.spi_type > 3) ? "invalid" : spi_type[oc.spi_type];
|
|
a = (oc.atomic > 2) ? "invalid" : atomic_type[oc.atomic];
|
|
msg_pdbg2("op[%d]: 0x%02x, %s, %s\n", i, oc.opcode, t, a);
|
|
}
|
|
msg_pdbg2("Pre-OP 0: 0x%02x, Pre-OP 1: 0x%02x\n", ops->preop[0],
|
|
ops->preop[1]);
|
|
}
|
|
|
|
#define pprint_reg(reg, bit, val, sep) msg_pdbg("%s=%d" sep, #bit, (val & reg##_##bit)>>reg##_##bit##_OFF)
|
|
|
|
static void prettyprint_ich9_reg_hsfs(uint16_t reg_val)
|
|
{
|
|
msg_pdbg("HSFS: ");
|
|
pprint_reg(HSFS, FDONE, reg_val, ", ");
|
|
pprint_reg(HSFS, FCERR, reg_val, ", ");
|
|
pprint_reg(HSFS, AEL, reg_val, ", ");
|
|
pprint_reg(HSFS, BERASE, reg_val, ", ");
|
|
pprint_reg(HSFS, SCIP, reg_val, ", ");
|
|
pprint_reg(HSFS, FDOPSS, reg_val, ", ");
|
|
pprint_reg(HSFS, FDV, reg_val, ", ");
|
|
pprint_reg(HSFS, FLOCKDN, reg_val, "\n");
|
|
}
|
|
|
|
static void prettyprint_ich9_reg_hsfc(uint16_t reg_val)
|
|
{
|
|
msg_pdbg("HSFC: ");
|
|
pprint_reg(HSFC, FGO, reg_val, ", ");
|
|
pprint_reg(HSFC, FCYCLE, reg_val, ", ");
|
|
pprint_reg(HSFC, FDBC, reg_val, ", ");
|
|
pprint_reg(HSFC, SME, reg_val, "\n");
|
|
}
|
|
|
|
static void prettyprint_ich9_reg_ssfs(uint32_t reg_val)
|
|
{
|
|
msg_pdbg("SSFS: ");
|
|
pprint_reg(SSFS, SCIP, reg_val, ", ");
|
|
pprint_reg(SSFS, FDONE, reg_val, ", ");
|
|
pprint_reg(SSFS, FCERR, reg_val, ", ");
|
|
pprint_reg(SSFS, AEL, reg_val, "\n");
|
|
}
|
|
|
|
static void prettyprint_ich9_reg_ssfc(uint32_t reg_val)
|
|
{
|
|
msg_pdbg("SSFC: ");
|
|
pprint_reg(SSFC, SCGO, reg_val, ", ");
|
|
pprint_reg(SSFC, ACS, reg_val, ", ");
|
|
pprint_reg(SSFC, SPOP, reg_val, ", ");
|
|
pprint_reg(SSFC, COP, reg_val, ", ");
|
|
pprint_reg(SSFC, DBC, reg_val, ", ");
|
|
pprint_reg(SSFC, SME, reg_val, ", ");
|
|
pprint_reg(SSFC, SCF, reg_val, "\n");
|
|
}
|
|
|
|
static uint8_t lookup_spi_type(uint8_t opcode)
|
|
{
|
|
int a;
|
|
|
|
for (a = 0; a < ARRAY_SIZE(POSSIBLE_OPCODES); a++) {
|
|
if (POSSIBLE_OPCODES[a].opcode == opcode)
|
|
return POSSIBLE_OPCODES[a].spi_type;
|
|
}
|
|
|
|
return 0xFF;
|
|
}
|
|
|
|
static int reprogram_opcode_on_the_fly(uint8_t opcode, unsigned int writecnt, unsigned int readcnt)
|
|
{
|
|
uint8_t spi_type;
|
|
|
|
spi_type = lookup_spi_type(opcode);
|
|
if (spi_type > 3) {
|
|
/* Try to guess spi type from read/write sizes.
|
|
* The following valid writecnt/readcnt combinations exist:
|
|
* writecnt = 4, readcnt >= 0
|
|
* writecnt = 1, readcnt >= 0
|
|
* writecnt >= 4, readcnt = 0
|
|
* writecnt >= 1, readcnt = 0
|
|
* writecnt >= 1 is guaranteed for all commands.
|
|
*/
|
|
if (readcnt == 0)
|
|
/* if readcnt=0 and writecount >= 4, we don't know if it is WRITE_NO_ADDRESS
|
|
* or WRITE_WITH_ADDRESS. But if we use WRITE_NO_ADDRESS and the first 3 data
|
|
* bytes are actual the address, they go to the bus anyhow
|
|
*/
|
|
spi_type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
|
|
else if (writecnt == 1) // and readcnt is > 0
|
|
spi_type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
|
|
else if (writecnt == 4) // and readcnt is > 0
|
|
spi_type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
|
|
else // we have an invalid case
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
int oppos = 2; // use original JEDEC_BE_D8 offset
|
|
curopcodes->opcode[oppos].opcode = opcode;
|
|
curopcodes->opcode[oppos].spi_type = spi_type;
|
|
program_opcodes(curopcodes, 0);
|
|
oppos = find_opcode(curopcodes, opcode);
|
|
msg_pdbg2("on-the-fly OPCODE (0x%02X) re-programmed, op-pos=%d\n", opcode, oppos);
|
|
return oppos;
|
|
}
|
|
|
|
static int find_opcode(OPCODES *op, uint8_t opcode)
|
|
{
|
|
int a;
|
|
|
|
if (op == NULL) {
|
|
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
for (a = 0; a < 8; a++) {
|
|
if (op->opcode[a].opcode == opcode)
|
|
return a;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int find_preop(OPCODES *op, uint8_t preop)
|
|
{
|
|
int a;
|
|
|
|
if (op == NULL) {
|
|
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
for (a = 0; a < 2; a++) {
|
|
if (op->preop[a] == preop)
|
|
return a;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Create a struct OPCODES based on what we find in the locked down chipset. */
|
|
static int generate_opcodes(OPCODES * op)
|
|
{
|
|
int a;
|
|
uint16_t preop, optype;
|
|
uint32_t opmenu[2];
|
|
|
|
if (op == NULL) {
|
|
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
switch (ich_generation) {
|
|
case CHIPSET_ICH7:
|
|
preop = REGREAD16(ICH7_REG_PREOP);
|
|
optype = REGREAD16(ICH7_REG_OPTYPE);
|
|
opmenu[0] = REGREAD32(ICH7_REG_OPMENU);
|
|
opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4);
|
|
break;
|
|
case CHIPSET_ICH8:
|
|
default: /* Future version might behave the same */
|
|
preop = REGREAD16(ICH9_REG_PREOP);
|
|
optype = REGREAD16(ICH9_REG_OPTYPE);
|
|
opmenu[0] = REGREAD32(ICH9_REG_OPMENU);
|
|
opmenu[1] = REGREAD32(ICH9_REG_OPMENU + 4);
|
|
break;
|
|
}
|
|
|
|
op->preop[0] = (uint8_t) preop;
|
|
op->preop[1] = (uint8_t) (preop >> 8);
|
|
|
|
for (a = 0; a < 8; a++) {
|
|
op->opcode[a].spi_type = (uint8_t) (optype & 0x3);
|
|
optype >>= 2;
|
|
}
|
|
|
|
for (a = 0; a < 4; a++) {
|
|
op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff);
|
|
opmenu[0] >>= 8;
|
|
}
|
|
|
|
for (a = 4; a < 8; a++) {
|
|
op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff);
|
|
opmenu[1] >>= 8;
|
|
}
|
|
|
|
/* No preopcodes used by default. */
|
|
for (a = 0; a < 8; a++)
|
|
op->opcode[a].atomic = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int program_opcodes(OPCODES *op, int enable_undo)
|
|
{
|
|
uint8_t a;
|
|
uint16_t preop, optype;
|
|
uint32_t opmenu[2];
|
|
|
|
/* Program Prefix Opcodes */
|
|
/* 0:7 Prefix Opcode 1 */
|
|
preop = (op->preop[0]);
|
|
/* 8:16 Prefix Opcode 2 */
|
|
preop |= ((uint16_t) op->preop[1]) << 8;
|
|
|
|
/* Program Opcode Types 0 - 7 */
|
|
optype = 0;
|
|
for (a = 0; a < 8; a++) {
|
|
optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2);
|
|
}
|
|
|
|
/* Program Allowable Opcodes 0 - 3 */
|
|
opmenu[0] = 0;
|
|
for (a = 0; a < 4; a++) {
|
|
opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8);
|
|
}
|
|
|
|
/*Program Allowable Opcodes 4 - 7 */
|
|
opmenu[1] = 0;
|
|
for (a = 4; a < 8; a++) {
|
|
opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8);
|
|
}
|
|
|
|
msg_pdbg2("\n%s: preop=%04x optype=%04x opmenu=%08x%08x\n", __func__, preop, optype, opmenu[0], opmenu[1]);
|
|
switch (ich_generation) {
|
|
case CHIPSET_ICH7:
|
|
/* Register undo only for enable_undo=1, i.e. first call. */
|
|
if (enable_undo) {
|
|
rmmio_valw(ich_spibar + ICH7_REG_PREOP);
|
|
rmmio_valw(ich_spibar + ICH7_REG_OPTYPE);
|
|
rmmio_vall(ich_spibar + ICH7_REG_OPMENU);
|
|
rmmio_vall(ich_spibar + ICH7_REG_OPMENU + 4);
|
|
}
|
|
mmio_writew(preop, ich_spibar + ICH7_REG_PREOP);
|
|
mmio_writew(optype, ich_spibar + ICH7_REG_OPTYPE);
|
|
mmio_writel(opmenu[0], ich_spibar + ICH7_REG_OPMENU);
|
|
mmio_writel(opmenu[1], ich_spibar + ICH7_REG_OPMENU + 4);
|
|
break;
|
|
case CHIPSET_ICH8:
|
|
default: /* Future version might behave the same */
|
|
/* Register undo only for enable_undo=1, i.e. first call. */
|
|
if (enable_undo) {
|
|
rmmio_valw(ich_spibar + ICH9_REG_PREOP);
|
|
rmmio_valw(ich_spibar + ICH9_REG_OPTYPE);
|
|
rmmio_vall(ich_spibar + ICH9_REG_OPMENU);
|
|
rmmio_vall(ich_spibar + ICH9_REG_OPMENU + 4);
|
|
}
|
|
mmio_writew(preop, ich_spibar + ICH9_REG_PREOP);
|
|
mmio_writew(optype, ich_spibar + ICH9_REG_OPTYPE);
|
|
mmio_writel(opmenu[0], ich_spibar + ICH9_REG_OPMENU);
|
|
mmio_writel(opmenu[1], ich_spibar + ICH9_REG_OPMENU + 4);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns -1 if at least one mandatory opcode is inaccessible, 0 otherwise.
|
|
* FIXME: this should also check for
|
|
* - at least one probing opcode (RDID (incl. AT25F variants?), REMS, RES?)
|
|
* - at least one erasing opcode (lots.)
|
|
* - at least one program opcode (BYTE_PROGRAM, AAI_WORD_PROGRAM, ...?)
|
|
* - necessary preops? (EWSR, WREN, ...?)
|
|
*/
|
|
static int ich_missing_opcodes()
|
|
{
|
|
uint8_t ops[] = {
|
|
JEDEC_READ,
|
|
JEDEC_RDSR,
|
|
0
|
|
};
|
|
int i = 0;
|
|
while (ops[i] != 0) {
|
|
msg_pspew("checking for opcode 0x%02x\n", ops[i]);
|
|
if (find_opcode(curopcodes, ops[i]) == -1)
|
|
return -1;
|
|
i++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try to set BBAR (BIOS Base Address Register), but read back the value in case
|
|
* it didn't stick.
|
|
*/
|
|
static void ich_set_bbar(uint32_t min_addr)
|
|
{
|
|
int bbar_off;
|
|
switch (ich_generation) {
|
|
case CHIPSET_ICH7:
|
|
bbar_off = 0x50;
|
|
break;
|
|
case CHIPSET_ICH8:
|
|
msg_perr("BBAR offset is unknown on ICH8!\n");
|
|
return;
|
|
case CHIPSET_ICH9:
|
|
default: /* Future version might behave the same */
|
|
bbar_off = ICH9_REG_BBAR;
|
|
break;
|
|
}
|
|
|
|
ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & ~BBAR_MASK;
|
|
if (ichspi_bbar) {
|
|
msg_pdbg("Reserved bits in BBAR not zero: 0x%08x\n",
|
|
ichspi_bbar);
|
|
}
|
|
min_addr &= BBAR_MASK;
|
|
ichspi_bbar |= min_addr;
|
|
rmmio_writel(ichspi_bbar, ich_spibar + bbar_off);
|
|
ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & BBAR_MASK;
|
|
|
|
/* We don't have any option except complaining. And if the write
|
|
* failed, the restore will fail as well, so no problem there.
|
|
*/
|
|
if (ichspi_bbar != min_addr)
|
|
msg_perr("Setting BBAR to 0x%08x failed! New value: 0x%08x.\n",
|
|
min_addr, ichspi_bbar);
|
|
}
|
|
|
|
/* Read len bytes from the fdata/spid register into the data array.
|
|
*
|
|
* Note that using len > flash->pgm->spi.max_data_read will return garbage or
|
|
* may even crash.
|
|
*/
|
|
static void ich_read_data(uint8_t *data, int len, int reg0_off)
|
|
{
|
|
int i;
|
|
uint32_t temp32 = 0;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if ((i % 4) == 0)
|
|
temp32 = REGREAD32(reg0_off + i);
|
|
|
|
data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
|
|
}
|
|
}
|
|
|
|
/* Fill len bytes from the data array into the fdata/spid registers.
|
|
*
|
|
* Note that using len > flash->pgm->spi.max_data_write will trash the registers
|
|
* following the data registers.
|
|
*/
|
|
static void ich_fill_data(const uint8_t *data, int len, int reg0_off)
|
|
{
|
|
uint32_t temp32 = 0;
|
|
int i;
|
|
|
|
if (len <= 0)
|
|
return;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if ((i % 4) == 0)
|
|
temp32 = 0;
|
|
|
|
temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);
|
|
|
|
if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
|
|
REGWRITE32(reg0_off + (i - (i % 4)), temp32);
|
|
}
|
|
i--;
|
|
if ((i % 4) != 3) /* Write remaining data to regs. */
|
|
REGWRITE32(reg0_off + (i - (i % 4)), temp32);
|
|
}
|
|
|
|
/* This function generates OPCODES from or programs OPCODES to ICH according to
|
|
* the chipset's SPI configuration lock.
|
|
*
|
|
* It should be called before ICH sends any spi command.
|
|
*/
|
|
static int ich_init_opcodes(void)
|
|
{
|
|
int rc = 0;
|
|
OPCODES *curopcodes_done;
|
|
|
|
if (curopcodes)
|
|
return 0;
|
|
|
|
if (ichspi_lock) {
|
|
msg_pdbg("Reading OPCODES... ");
|
|
curopcodes_done = &O_EXISTING;
|
|
rc = generate_opcodes(curopcodes_done);
|
|
} else {
|
|
msg_pdbg("Programming OPCODES... ");
|
|
curopcodes_done = &O_ST_M25P;
|
|
rc = program_opcodes(curopcodes_done, 1);
|
|
}
|
|
|
|
if (rc) {
|
|
curopcodes = NULL;
|
|
msg_perr("failed\n");
|
|
return 1;
|
|
} else {
|
|
curopcodes = curopcodes_done;
|
|
msg_pdbg("done\n");
|
|
prettyprint_opcodes(curopcodes);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int ich7_run_opcode(OPCODE op, uint32_t offset,
|
|
uint8_t datalength, uint8_t * data, int maxdata)
|
|
{
|
|
int write_cmd = 0;
|
|
int timeout;
|
|
uint32_t temp32;
|
|
uint16_t temp16;
|
|
uint64_t opmenu;
|
|
int opcode_index;
|
|
|
|
/* Is it a write command? */
|
|
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|
|
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
|
|
write_cmd = 1;
|
|
}
|
|
|
|
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
|
|
while ((REGREAD16(ICH7_REG_SPIS) & SPIS_SCIP) && --timeout) {
|
|
programmer_delay(10);
|
|
}
|
|
if (!timeout) {
|
|
msg_perr("Error: SCIP never cleared!\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Program offset in flash into SPIA while preserving reserved bits. */
|
|
temp32 = REGREAD32(ICH7_REG_SPIA) & ~0x00FFFFFF;
|
|
REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF) | temp32);
|
|
|
|
/* Program data into SPID0 to N */
|
|
if (write_cmd && (datalength != 0))
|
|
ich_fill_data(data, datalength, ICH7_REG_SPID0);
|
|
|
|
/* Assemble SPIS */
|
|
temp16 = REGREAD16(ICH7_REG_SPIS);
|
|
/* keep reserved bits */
|
|
temp16 &= SPIS_RESERVED_MASK;
|
|
/* clear error status registers */
|
|
temp16 |= (SPIS_CDS | SPIS_FCERR);
|
|
REGWRITE16(ICH7_REG_SPIS, temp16);
|
|
|
|
/* Assemble SPIC */
|
|
temp16 = 0;
|
|
|
|
if (datalength != 0) {
|
|
temp16 |= SPIC_DS;
|
|
temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8;
|
|
}
|
|
|
|
/* Select opcode */
|
|
opmenu = REGREAD32(ICH7_REG_OPMENU);
|
|
opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32;
|
|
|
|
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
|
|
if ((opmenu & 0xff) == op.opcode) {
|
|
break;
|
|
}
|
|
opmenu >>= 8;
|
|
}
|
|
if (opcode_index == 8) {
|
|
msg_pdbg("Opcode %x not found.\n", op.opcode);
|
|
return 1;
|
|
}
|
|
temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4;
|
|
|
|
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
|
|
/* Handle Atomic. Atomic commands include three steps:
|
|
- sending the preop (mainly EWSR or WREN)
|
|
- sending the main command
|
|
- waiting for the busy bit (WIP) to be cleared
|
|
This means the timeout must be sufficient for chip erase
|
|
of slow high-capacity chips.
|
|
*/
|
|
switch (op.atomic) {
|
|
case 2:
|
|
/* Select second preop. */
|
|
temp16 |= SPIC_SPOP;
|
|
/* And fall through. */
|
|
case 1:
|
|
/* Atomic command (preop+op) */
|
|
temp16 |= SPIC_ACS;
|
|
timeout = 100 * 1000 * 60; /* 60 seconds */
|
|
break;
|
|
}
|
|
|
|
/* Start */
|
|
temp16 |= SPIC_SCGO;
|
|
|
|
/* write it */
|
|
REGWRITE16(ICH7_REG_SPIC, temp16);
|
|
|
|
/* Wait for Cycle Done Status or Flash Cycle Error. */
|
|
while (((REGREAD16(ICH7_REG_SPIS) & (SPIS_CDS | SPIS_FCERR)) == 0) &&
|
|
--timeout) {
|
|
programmer_delay(10);
|
|
}
|
|
if (!timeout) {
|
|
msg_perr("timeout, ICH7_REG_SPIS=0x%04x\n",
|
|
REGREAD16(ICH7_REG_SPIS));
|
|
return 1;
|
|
}
|
|
|
|
/* FIXME: make sure we do not needlessly cause transaction errors. */
|
|
temp16 = REGREAD16(ICH7_REG_SPIS);
|
|
if (temp16 & SPIS_FCERR) {
|
|
msg_perr("Transaction error!\n");
|
|
/* keep reserved bits */
|
|
temp16 &= SPIS_RESERVED_MASK;
|
|
REGWRITE16(ICH7_REG_SPIS, temp16 | SPIS_FCERR);
|
|
return 1;
|
|
}
|
|
|
|
if ((!write_cmd) && (datalength != 0))
|
|
ich_read_data(data, datalength, ICH7_REG_SPID0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ich9_run_opcode(OPCODE op, uint32_t offset,
|
|
uint8_t datalength, uint8_t * data)
|
|
{
|
|
int write_cmd = 0;
|
|
int timeout;
|
|
uint32_t temp32;
|
|
uint64_t opmenu;
|
|
int opcode_index;
|
|
|
|
/* Is it a write command? */
|
|
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|
|
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
|
|
write_cmd = 1;
|
|
}
|
|
|
|
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
|
|
while ((REGREAD8(ICH9_REG_SSFS) & SSFS_SCIP) && --timeout) {
|
|
programmer_delay(10);
|
|
}
|
|
if (!timeout) {
|
|
msg_perr("Error: SCIP never cleared!\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Program offset in flash into FADDR while preserve the reserved bits
|
|
* and clearing the 25. address bit which is only useable in hwseq. */
|
|
temp32 = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF;
|
|
REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF) | temp32);
|
|
|
|
/* Program data into FDATA0 to N */
|
|
if (write_cmd && (datalength != 0))
|
|
ich_fill_data(data, datalength, ICH9_REG_FDATA0);
|
|
|
|
/* Assemble SSFS + SSFC */
|
|
temp32 = REGREAD32(ICH9_REG_SSFS);
|
|
/* Keep reserved bits only */
|
|
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
|
|
/* Clear cycle done and cycle error status registers */
|
|
temp32 |= (SSFS_FDONE | SSFS_FCERR);
|
|
REGWRITE32(ICH9_REG_SSFS, temp32);
|
|
|
|
/* Use 20 MHz */
|
|
temp32 |= SSFC_SCF_20MHZ;
|
|
|
|
/* Set data byte count (DBC) and data cycle bit (DS) */
|
|
if (datalength != 0) {
|
|
uint32_t datatemp;
|
|
temp32 |= SSFC_DS;
|
|
datatemp = ((((uint32_t)datalength - 1) << SSFC_DBC_OFF) &
|
|
SSFC_DBC);
|
|
temp32 |= datatemp;
|
|
}
|
|
|
|
/* Select opcode */
|
|
opmenu = REGREAD32(ICH9_REG_OPMENU);
|
|
opmenu |= ((uint64_t)REGREAD32(ICH9_REG_OPMENU + 4)) << 32;
|
|
|
|
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
|
|
if ((opmenu & 0xff) == op.opcode) {
|
|
break;
|
|
}
|
|
opmenu >>= 8;
|
|
}
|
|
if (opcode_index == 8) {
|
|
msg_pdbg("Opcode %x not found.\n", op.opcode);
|
|
return 1;
|
|
}
|
|
temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4);
|
|
|
|
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
|
|
/* Handle Atomic. Atomic commands include three steps:
|
|
- sending the preop (mainly EWSR or WREN)
|
|
- sending the main command
|
|
- waiting for the busy bit (WIP) to be cleared
|
|
This means the timeout must be sufficient for chip erase
|
|
of slow high-capacity chips.
|
|
*/
|
|
switch (op.atomic) {
|
|
case 2:
|
|
/* Select second preop. */
|
|
temp32 |= SSFC_SPOP;
|
|
/* And fall through. */
|
|
case 1:
|
|
/* Atomic command (preop+op) */
|
|
temp32 |= SSFC_ACS;
|
|
timeout = 100 * 1000 * 60; /* 60 seconds */
|
|
break;
|
|
}
|
|
|
|
/* Start */
|
|
temp32 |= SSFC_SCGO;
|
|
|
|
/* write it */
|
|
REGWRITE32(ICH9_REG_SSFS, temp32);
|
|
|
|
/* Wait for Cycle Done Status or Flash Cycle Error. */
|
|
while (((REGREAD32(ICH9_REG_SSFS) & (SSFS_FDONE | SSFS_FCERR)) == 0) &&
|
|
--timeout) {
|
|
programmer_delay(10);
|
|
}
|
|
if (!timeout) {
|
|
msg_perr("timeout, ICH9_REG_SSFS=0x%08x\n",
|
|
REGREAD32(ICH9_REG_SSFS));
|
|
return 1;
|
|
}
|
|
|
|
/* FIXME make sure we do not needlessly cause transaction errors. */
|
|
temp32 = REGREAD32(ICH9_REG_SSFS);
|
|
if (temp32 & SSFS_FCERR) {
|
|
msg_perr("Transaction error!\n");
|
|
prettyprint_ich9_reg_ssfs(temp32);
|
|
prettyprint_ich9_reg_ssfc(temp32);
|
|
/* keep reserved bits */
|
|
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
|
|
/* Clear the transaction error. */
|
|
REGWRITE32(ICH9_REG_SSFS, temp32 | SSFS_FCERR);
|
|
return 1;
|
|
}
|
|
|
|
if ((!write_cmd) && (datalength != 0))
|
|
ich_read_data(data, datalength, ICH9_REG_FDATA0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset,
|
|
uint8_t datalength, uint8_t * data)
|
|
{
|
|
/* max_data_read == max_data_write for all Intel/VIA SPI masters */
|
|
uint8_t maxlength = flash->pgm->spi.max_data_read;
|
|
|
|
if (ich_generation == CHIPSET_ICH_UNKNOWN) {
|
|
msg_perr("%s: unsupported chipset\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
if (datalength > maxlength) {
|
|
msg_perr("%s: Internal command size error for "
|
|
"opcode 0x%02x, got datalength=%i, want <=%i\n",
|
|
__func__, op.opcode, datalength, maxlength);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
|
|
switch (ich_generation) {
|
|
case CHIPSET_ICH7:
|
|
return ich7_run_opcode(op, offset, datalength, data, maxlength);
|
|
case CHIPSET_ICH8:
|
|
default: /* Future version might behave the same */
|
|
return ich9_run_opcode(op, offset, datalength, data);
|
|
}
|
|
}
|
|
|
|
static int ich_spi_send_command(struct flashctx *flash, unsigned int writecnt,
|
|
unsigned int readcnt,
|
|
const unsigned char *writearr,
|
|
unsigned char *readarr)
|
|
{
|
|
int result;
|
|
int opcode_index = -1;
|
|
const unsigned char cmd = *writearr;
|
|
OPCODE *opcode;
|
|
uint32_t addr = 0;
|
|
uint8_t *data;
|
|
int count;
|
|
|
|
/* find cmd in opcodes-table */
|
|
opcode_index = find_opcode(curopcodes, cmd);
|
|
if (opcode_index == -1) {
|
|
if (!ichspi_lock)
|
|
opcode_index = reprogram_opcode_on_the_fly(cmd, writecnt, readcnt);
|
|
if (opcode_index == SPI_INVALID_LENGTH) {
|
|
msg_pdbg("OPCODE 0x%02x has unsupported length, will not execute.\n", cmd);
|
|
return SPI_INVALID_LENGTH;
|
|
} else if (opcode_index == -1) {
|
|
msg_pdbg("Invalid OPCODE 0x%02x, will not execute.\n",
|
|
cmd);
|
|
return SPI_INVALID_OPCODE;
|
|
}
|
|
}
|
|
|
|
opcode = &(curopcodes->opcode[opcode_index]);
|
|
|
|
/* The following valid writecnt/readcnt combinations exist:
|
|
* writecnt = 4, readcnt >= 0
|
|
* writecnt = 1, readcnt >= 0
|
|
* writecnt >= 4, readcnt = 0
|
|
* writecnt >= 1, readcnt = 0
|
|
* writecnt >= 1 is guaranteed for all commands.
|
|
*/
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) &&
|
|
(writecnt != 4)) {
|
|
msg_perr("%s: Internal command size error for opcode "
|
|
"0x%02x, got writecnt=%i, want =4\n", __func__, cmd,
|
|
writecnt);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) &&
|
|
(writecnt != 1)) {
|
|
msg_perr("%s: Internal command size error for opcode "
|
|
"0x%02x, got writecnt=%i, want =1\n", __func__, cmd,
|
|
writecnt);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) &&
|
|
(writecnt < 4)) {
|
|
msg_perr("%s: Internal command size error for opcode "
|
|
"0x%02x, got writecnt=%i, want >=4\n", __func__, cmd,
|
|
writecnt);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
if (((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
|
|
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) &&
|
|
(readcnt)) {
|
|
msg_perr("%s: Internal command size error for opcode "
|
|
"0x%02x, got readcnt=%i, want =0\n", __func__, cmd,
|
|
readcnt);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
|
|
/* if opcode-type requires an address */
|
|
if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS ||
|
|
opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
|
|
addr = (writearr[1] << 16) |
|
|
(writearr[2] << 8) | (writearr[3] << 0);
|
|
if (addr < ichspi_bbar) {
|
|
msg_perr("%s: Address 0x%06x below allowed "
|
|
"range 0x%06x-0xffffff\n", __func__,
|
|
addr, ichspi_bbar);
|
|
return SPI_INVALID_ADDRESS;
|
|
}
|
|
}
|
|
|
|
/* Translate read/write array/count.
|
|
* The maximum data length is identical for the maximum read length and
|
|
* for the maximum write length excluding opcode and address. Opcode and
|
|
* address are stored in separate registers, not in the data registers
|
|
* and are thus not counted towards data length. The only exception
|
|
* applies if the opcode definition (un)intentionally classifies said
|
|
* opcode incorrectly as non-address opcode or vice versa. */
|
|
if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) {
|
|
data = (uint8_t *) (writearr + 1);
|
|
count = writecnt - 1;
|
|
} else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
|
|
data = (uint8_t *) (writearr + 4);
|
|
count = writecnt - 4;
|
|
} else {
|
|
data = (uint8_t *) readarr;
|
|
count = readcnt;
|
|
}
|
|
|
|
result = run_opcode(flash, *opcode, addr, count, data);
|
|
if (result) {
|
|
msg_pdbg("Running OPCODE 0x%02x failed ", opcode->opcode);
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
|
|
(opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS)) {
|
|
msg_pdbg("at address 0x%06x ", addr);
|
|
}
|
|
msg_pdbg("(payload length was %d).\n", count);
|
|
|
|
/* Print out the data array if it contains data to write.
|
|
* Errors are detected before the received data is read back into
|
|
* the array so it won't make sense to print it then. */
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
|
|
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) {
|
|
int i;
|
|
msg_pspew("The data was:\n");
|
|
for (i = 0; i < count; i++){
|
|
msg_pspew("%3d: 0x%02x\n", i, data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static struct hwseq_data {
|
|
uint32_t size_comp0;
|
|
uint32_t size_comp1;
|
|
} hwseq_data;
|
|
|
|
/* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */
|
|
static void ich_hwseq_set_addr(uint32_t addr)
|
|
{
|
|
uint32_t addr_old = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF;
|
|
REGWRITE32(ICH9_REG_FADDR, (addr & 0x01FFFFFF) | addr_old);
|
|
}
|
|
|
|
/* Sets FADDR.FLA to 'addr' and returns the erase block size in bytes
|
|
* of the block containing this address. May return nonsense if the address is
|
|
* not valid. The erase block size for a specific address depends on the flash
|
|
* partition layout as specified by FPB and the partition properties as defined
|
|
* by UVSCC and LVSCC respectively. An alternative to implement this method
|
|
* would be by querying FPB and the respective VSCC register directly.
|
|
*/
|
|
static uint32_t ich_hwseq_get_erase_block_size(unsigned int addr)
|
|
{
|
|
uint8_t enc_berase;
|
|
static const uint32_t const dec_berase[4] = {
|
|
256,
|
|
4 * 1024,
|
|
8 * 1024,
|
|
64 * 1024
|
|
};
|
|
|
|
ich_hwseq_set_addr(addr);
|
|
enc_berase = (REGREAD16(ICH9_REG_HSFS) & HSFS_BERASE) >>
|
|
HSFS_BERASE_OFF;
|
|
return dec_berase[enc_berase];
|
|
}
|
|
|
|
/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
|
|
Resets all error flags in HSFS.
|
|
Returns 0 if the cycle completes successfully without errors within
|
|
timeout us, 1 on errors. */
|
|
static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
|
|
unsigned int len)
|
|
{
|
|
uint16_t hsfs;
|
|
uint32_t addr;
|
|
|
|
timeout /= 8; /* scale timeout duration to counter */
|
|
while ((((hsfs = REGREAD16(ICH9_REG_HSFS)) &
|
|
(HSFS_FDONE | HSFS_FCERR)) == 0) &&
|
|
--timeout) {
|
|
programmer_delay(8);
|
|
}
|
|
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
|
|
if (!timeout) {
|
|
addr = REGREAD32(ICH9_REG_FADDR) & 0x01FFFFFF;
|
|
msg_perr("Timeout error between offset 0x%08x and "
|
|
"0x%08x (= 0x%08x + %d)!\n",
|
|
addr, addr + len - 1, addr, len - 1);
|
|
prettyprint_ich9_reg_hsfs(hsfs);
|
|
prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC));
|
|
return 1;
|
|
}
|
|
|
|
if (hsfs & HSFS_FCERR) {
|
|
addr = REGREAD32(ICH9_REG_FADDR) & 0x01FFFFFF;
|
|
msg_perr("Transaction error between offset 0x%08x and "
|
|
"0x%08x (= 0x%08x + %d)!\n",
|
|
addr, addr + len - 1, addr, len - 1);
|
|
prettyprint_ich9_reg_hsfs(hsfs);
|
|
prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC));
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ich_hwseq_probe(struct flashctx *flash)
|
|
{
|
|
uint32_t total_size, boundary;
|
|
uint32_t erase_size_low, size_low, erase_size_high, size_high;
|
|
struct block_eraser *eraser;
|
|
|
|
total_size = hwseq_data.size_comp0 + hwseq_data.size_comp1;
|
|
msg_cdbg("Found %d attached SPI flash chip",
|
|
(hwseq_data.size_comp1 != 0) ? 2 : 1);
|
|
if (hwseq_data.size_comp1 != 0)
|
|
msg_cdbg("s with a combined");
|
|
else
|
|
msg_cdbg(" with a");
|
|
msg_cdbg(" density of %d kB.\n", total_size / 1024);
|
|
flash->chip->total_size = total_size / 1024;
|
|
|
|
eraser = &(flash->chip->block_erasers[0]);
|
|
boundary = (REGREAD32(ICH9_REG_FPB) & FPB_FPBA) << 12;
|
|
size_high = total_size - boundary;
|
|
erase_size_high = ich_hwseq_get_erase_block_size(boundary);
|
|
|
|
if (boundary == 0) {
|
|
msg_cdbg("There is only one partition containing the whole "
|
|
"address space (0x%06x - 0x%06x).\n", 0, size_high-1);
|
|
eraser->eraseblocks[0].size = erase_size_high;
|
|
eraser->eraseblocks[0].count = size_high / erase_size_high;
|
|
msg_cdbg("There are %d erase blocks with %d B each.\n",
|
|
size_high / erase_size_high, erase_size_high);
|
|
} else {
|
|
msg_cdbg("The flash address space (0x%06x - 0x%06x) is divided "
|
|
"at address 0x%06x in two partitions.\n",
|
|
0, size_high-1, boundary);
|
|
size_low = total_size - size_high;
|
|
erase_size_low = ich_hwseq_get_erase_block_size(0);
|
|
|
|
eraser->eraseblocks[0].size = erase_size_low;
|
|
eraser->eraseblocks[0].count = size_low / erase_size_low;
|
|
msg_cdbg("The first partition ranges from 0x%06x to 0x%06x.\n",
|
|
0, size_low-1);
|
|
msg_cdbg("In that range are %d erase blocks with %d B each.\n",
|
|
size_low / erase_size_low, erase_size_low);
|
|
|
|
eraser->eraseblocks[1].size = erase_size_high;
|
|
eraser->eraseblocks[1].count = size_high / erase_size_high;
|
|
msg_cdbg("The second partition ranges from 0x%06x to 0x%06x.\n",
|
|
boundary, size_high-1);
|
|
msg_cdbg("In that range are %d erase blocks with %d B each.\n",
|
|
size_high / erase_size_high, erase_size_high);
|
|
}
|
|
flash->chip->tested = TEST_OK_PREW;
|
|
return 1;
|
|
}
|
|
|
|
static int ich_hwseq_block_erase(struct flashctx *flash, unsigned int addr,
|
|
unsigned int len)
|
|
{
|
|
uint32_t erase_block;
|
|
uint16_t hsfc;
|
|
uint32_t timeout = 5000 * 1000; /* 5 s for max 64 kB */
|
|
|
|
erase_block = ich_hwseq_get_erase_block_size(addr);
|
|
if (len != erase_block) {
|
|
msg_cerr("Erase block size for address 0x%06x is %d B, "
|
|
"but requested erase block size is %d B. "
|
|
"Not erasing anything.\n", addr, erase_block, len);
|
|
return -1;
|
|
}
|
|
|
|
/* Although the hardware supports this (it would erase the whole block
|
|
* containing the address) we play safe here. */
|
|
if (addr % erase_block != 0) {
|
|
msg_cerr("Erase address 0x%06x is not aligned to the erase "
|
|
"block boundary (any multiple of %d). "
|
|
"Not erasing anything.\n", addr, erase_block);
|
|
return -1;
|
|
}
|
|
|
|
if (addr + len > flash->chip->total_size * 1024) {
|
|
msg_perr("Request to erase some inaccessible memory address(es)"
|
|
" (addr=0x%x, len=%d). "
|
|
"Not erasing anything.\n", addr, len);
|
|
return -1;
|
|
}
|
|
|
|
msg_pdbg("Erasing %d bytes starting at 0x%06x.\n", len, addr);
|
|
|
|
/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
|
|
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
|
|
|
|
hsfc = REGREAD16(ICH9_REG_HSFC);
|
|
hsfc &= ~HSFC_FCYCLE; /* clear operation */
|
|
hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */
|
|
hsfc |= HSFC_FGO; /* start */
|
|
msg_pdbg("HSFC used for block erasing: ");
|
|
prettyprint_ich9_reg_hsfc(hsfc);
|
|
REGWRITE16(ICH9_REG_HSFC, hsfc);
|
|
|
|
if (ich_hwseq_wait_for_cycle_complete(timeout, len))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int ich_hwseq_read(struct flashctx *flash, uint8_t *buf,
|
|
unsigned int addr, unsigned int len)
|
|
{
|
|
uint16_t hsfc;
|
|
uint16_t timeout = 100 * 60;
|
|
uint8_t block_len;
|
|
|
|
if (addr + len > flash->chip->total_size * 1024) {
|
|
msg_perr("Request to read from an inaccessible memory address "
|
|
"(addr=0x%x, len=%d).\n", addr, len);
|
|
return -1;
|
|
}
|
|
|
|
msg_pdbg("Reading %d bytes starting at 0x%06x.\n", len, addr);
|
|
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
|
|
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
|
|
|
|
while (len > 0) {
|
|
block_len = min(len, flash->pgm->opaque.max_data_read);
|
|
ich_hwseq_set_addr(addr);
|
|
hsfc = REGREAD16(ICH9_REG_HSFC);
|
|
hsfc &= ~HSFC_FCYCLE; /* set read operation */
|
|
hsfc &= ~HSFC_FDBC; /* clear byte count */
|
|
/* set byte count */
|
|
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
|
|
hsfc |= HSFC_FGO; /* start */
|
|
REGWRITE16(ICH9_REG_HSFC, hsfc);
|
|
|
|
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
|
|
return 1;
|
|
ich_read_data(buf, block_len, ICH9_REG_FDATA0);
|
|
addr += block_len;
|
|
buf += block_len;
|
|
len -= block_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ich_hwseq_write(struct flashctx *flash, uint8_t *buf,
|
|
unsigned int addr, unsigned int len)
|
|
{
|
|
uint16_t hsfc;
|
|
uint16_t timeout = 100 * 60;
|
|
uint8_t block_len;
|
|
|
|
if (addr + len > flash->chip->total_size * 1024) {
|
|
msg_perr("Request to write to an inaccessible memory address "
|
|
"(addr=0x%x, len=%d).\n", addr, len);
|
|
return -1;
|
|
}
|
|
|
|
msg_pdbg("Writing %d bytes starting at 0x%06x.\n", len, addr);
|
|
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
|
|
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
|
|
|
|
while (len > 0) {
|
|
ich_hwseq_set_addr(addr);
|
|
block_len = min(len, flash->pgm->opaque.max_data_write);
|
|
ich_fill_data(buf, block_len, ICH9_REG_FDATA0);
|
|
hsfc = REGREAD16(ICH9_REG_HSFC);
|
|
hsfc &= ~HSFC_FCYCLE; /* clear operation */
|
|
hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */
|
|
hsfc &= ~HSFC_FDBC; /* clear byte count */
|
|
/* set byte count */
|
|
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
|
|
hsfc |= HSFC_FGO; /* start */
|
|
REGWRITE16(ICH9_REG_HSFC, hsfc);
|
|
|
|
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
|
|
return -1;
|
|
addr += block_len;
|
|
buf += block_len;
|
|
len -= block_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ich_spi_send_multicommand(struct flashctx *flash,
|
|
struct spi_command *cmds)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
int oppos, preoppos;
|
|
for (; (cmds->writecnt || cmds->readcnt) && !ret; cmds++) {
|
|
if ((cmds + 1)->writecnt || (cmds + 1)->readcnt) {
|
|
/* Next command is valid. */
|
|
preoppos = find_preop(curopcodes, cmds->writearr[0]);
|
|
oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]);
|
|
if ((oppos == -1) && (preoppos != -1)) {
|
|
/* Current command is listed as preopcode in
|
|
* ICH struct OPCODES, but next command is not
|
|
* listed as opcode in that struct.
|
|
* Check for command sanity, then
|
|
* try to reprogram the ICH opcode list.
|
|
*/
|
|
if (find_preop(curopcodes,
|
|
(cmds + 1)->writearr[0]) != -1) {
|
|
msg_perr("%s: Two subsequent "
|
|
"preopcodes 0x%02x and 0x%02x, "
|
|
"ignoring the first.\n",
|
|
__func__, cmds->writearr[0],
|
|
(cmds + 1)->writearr[0]);
|
|
continue;
|
|
}
|
|
/* If the chipset is locked down, we'll fail
|
|
* during execution of the next command anyway.
|
|
* No need to bother with fixups.
|
|
*/
|
|
if (!ichspi_lock) {
|
|
oppos = reprogram_opcode_on_the_fly((cmds + 1)->writearr[0], (cmds + 1)->writecnt, (cmds + 1)->readcnt);
|
|
if (oppos == -1)
|
|
continue;
|
|
curopcodes->opcode[oppos].atomic = preoppos + 1;
|
|
continue;
|
|
}
|
|
}
|
|
if ((oppos != -1) && (preoppos != -1)) {
|
|
/* Current command is listed as preopcode in
|
|
* ICH struct OPCODES and next command is listed
|
|
* as opcode in that struct. Match them up.
|
|
*/
|
|
curopcodes->opcode[oppos].atomic = preoppos + 1;
|
|
continue;
|
|
}
|
|
/* If none of the above if-statements about oppos or
|
|
* preoppos matched, this is a normal opcode.
|
|
*/
|
|
}
|
|
ret = ich_spi_send_command(flash, cmds->writecnt, cmds->readcnt,
|
|
cmds->writearr, cmds->readarr);
|
|
/* Reset the type of all opcodes to non-atomic. */
|
|
for (i = 0; i < 8; i++)
|
|
curopcodes->opcode[i].atomic = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define ICH_BMWAG(x) ((x >> 24) & 0xff)
|
|
#define ICH_BMRAG(x) ((x >> 16) & 0xff)
|
|
#define ICH_BRWA(x) ((x >> 8) & 0xff)
|
|
#define ICH_BRRA(x) ((x >> 0) & 0xff)
|
|
|
|
/* returns 0 if region is unused or r/w */
|
|
static int ich9_handle_frap(uint32_t frap, int i)
|
|
{
|
|
static const char *const access_names[4] = {
|
|
"locked", "read-only", "write-only", "read-write"
|
|
};
|
|
static const char *const region_names[5] = {
|
|
"Flash Descriptor", "BIOS", "Management Engine",
|
|
"Gigabit Ethernet", "Platform Data"
|
|
};
|
|
uint32_t base, limit;
|
|
int rwperms = (((ICH_BRWA(frap) >> i) & 1) << 1) |
|
|
(((ICH_BRRA(frap) >> i) & 1) << 0);
|
|
int offset = ICH9_REG_FREG0 + i * 4;
|
|
uint32_t freg = mmio_readl(ich_spibar + offset);
|
|
|
|
base = ICH_FREG_BASE(freg);
|
|
limit = ICH_FREG_LIMIT(freg);
|
|
if (base > limit || (freg == 0 && i > 0)) {
|
|
/* this FREG is disabled */
|
|
msg_pdbg2("0x%02X: 0x%08x FREG%i: %s region is unused.\n",
|
|
offset, freg, i, region_names[i]);
|
|
return 0;
|
|
}
|
|
msg_pdbg("0x%02X: 0x%08x ", offset, freg);
|
|
if (rwperms == 0x3) {
|
|
msg_pdbg("FREG%i: %s region (0x%08x-0x%08x) is %s.\n", i,
|
|
region_names[i], base, (limit | 0x0fff),
|
|
access_names[rwperms]);
|
|
return 0;
|
|
}
|
|
|
|
msg_pinfo("FREG%i: WARNING: %s region (0x%08x-0x%08x) is %s.\n", i,
|
|
region_names[i], base, (limit | 0x0fff),
|
|
access_names[rwperms]);
|
|
return 1;
|
|
}
|
|
|
|
/* In contrast to FRAP and the master section of the descriptor the bits
|
|
* in the PR registers have an inverted meaning. The bits in FRAP
|
|
* indicate read and write access _grant_. Here they indicate read
|
|
* and write _protection_ respectively. If both bits are 0 the address
|
|
* bits are ignored.
|
|
*/
|
|
#define ICH_PR_PERMS(pr) (((~((pr) >> PR_RP_OFF) & 1) << 0) | \
|
|
((~((pr) >> PR_WP_OFF) & 1) << 1))
|
|
|
|
/* returns 0 if range is unused (i.e. r/w) */
|
|
static int ich9_handle_pr(int i)
|
|
{
|
|
static const char *const access_names[3] = {
|
|
"locked", "read-only", "write-only"
|
|
};
|
|
uint8_t off = ICH9_REG_PR0 + (i * 4);
|
|
uint32_t pr = mmio_readl(ich_spibar + off);
|
|
unsigned int rwperms = ICH_PR_PERMS(pr);
|
|
|
|
if (rwperms == 0x3) {
|
|
msg_pdbg2("0x%02X: 0x%08x (PR%u is unused)\n", off, pr, i);
|
|
return 0;
|
|
}
|
|
|
|
msg_pdbg("0x%02X: 0x%08x ", off, pr);
|
|
msg_pinfo("PR%u: WARNING: 0x%08x-0x%08x is %s.\n", i, ICH_FREG_BASE(pr),
|
|
ICH_FREG_LIMIT(pr) | 0x0fff, access_names[rwperms]);
|
|
return 1;
|
|
}
|
|
|
|
/* Set/Clear the read and write protection enable bits of PR register @i
|
|
* according to @read_prot and @write_prot. */
|
|
static void ich9_set_pr(int i, int read_prot, int write_prot)
|
|
{
|
|
void *addr = ich_spibar + ICH9_REG_PR0 + (i * 4);
|
|
uint32_t old = mmio_readl(addr);
|
|
uint32_t new;
|
|
|
|
msg_gspew("PR%u is 0x%08x", i, old);
|
|
new = old & ~((1 << PR_RP_OFF) | (1 << PR_WP_OFF));
|
|
if (read_prot)
|
|
new |= (1 << PR_RP_OFF);
|
|
if (write_prot)
|
|
new |= (1 << PR_WP_OFF);
|
|
if (old == new) {
|
|
msg_gspew(" already.\n");
|
|
return;
|
|
}
|
|
msg_gspew(", trying to set it to 0x%08x ", new);
|
|
rmmio_writel(new, addr);
|
|
msg_gspew("resulted in 0x%08x.\n", mmio_readl(addr));
|
|
}
|
|
|
|
static const struct spi_programmer spi_programmer_ich7 = {
|
|
.type = SPI_CONTROLLER_ICH7,
|
|
.max_data_read = 64,
|
|
.max_data_write = 64,
|
|
.command = ich_spi_send_command,
|
|
.multicommand = ich_spi_send_multicommand,
|
|
.read = default_spi_read,
|
|
.write_256 = default_spi_write_256,
|
|
.write_aai = default_spi_write_aai,
|
|
};
|
|
|
|
static const struct spi_programmer spi_programmer_ich9 = {
|
|
.type = SPI_CONTROLLER_ICH9,
|
|
.max_data_read = 64,
|
|
.max_data_write = 64,
|
|
.command = ich_spi_send_command,
|
|
.multicommand = ich_spi_send_multicommand,
|
|
.read = default_spi_read,
|
|
.write_256 = default_spi_write_256,
|
|
.write_aai = default_spi_write_aai,
|
|
};
|
|
|
|
static const struct opaque_programmer opaque_programmer_ich_hwseq = {
|
|
.max_data_read = 64,
|
|
.max_data_write = 64,
|
|
.probe = ich_hwseq_probe,
|
|
.read = ich_hwseq_read,
|
|
.write = ich_hwseq_write,
|
|
.erase = ich_hwseq_block_erase,
|
|
};
|
|
|
|
int ich_init_spi(struct pci_dev *dev, uint32_t base, void *rcrb,
|
|
enum ich_chipset ich_gen)
|
|
{
|
|
int i;
|
|
uint8_t old, new;
|
|
uint16_t spibar_offset, tmp2;
|
|
uint32_t tmp;
|
|
char *arg;
|
|
int ich_spi_force = 0;
|
|
int ich_spi_rw_restricted = 0;
|
|
int desc_valid = 0;
|
|
struct ich_descriptors desc = {{ 0 }};
|
|
enum ich_spi_mode {
|
|
ich_auto,
|
|
ich_hwseq,
|
|
ich_swseq
|
|
} ich_spi_mode = ich_auto;
|
|
|
|
ich_generation = ich_gen;
|
|
|
|
switch (ich_generation) {
|
|
case CHIPSET_ICH_UNKNOWN:
|
|
return ERROR_FATAL;
|
|
case CHIPSET_ICH7:
|
|
case CHIPSET_ICH8:
|
|
spibar_offset = 0x3020;
|
|
break;
|
|
case CHIPSET_ICH9:
|
|
default: /* Future version might behave the same */
|
|
spibar_offset = 0x3800;
|
|
break;
|
|
}
|
|
|
|
/* SPIBAR is at RCRB+0x3020 for ICH[78] and RCRB+0x3800 for ICH9. */
|
|
msg_pdbg("SPIBAR = 0x%x + 0x%04x\n", base, spibar_offset);
|
|
|
|
/* Assign Virtual Address */
|
|
ich_spibar = rcrb + spibar_offset;
|
|
|
|
switch (ich_generation) {
|
|
case CHIPSET_ICH7:
|
|
msg_pdbg("0x00: 0x%04x (SPIS)\n",
|
|
mmio_readw(ich_spibar + 0));
|
|
msg_pdbg("0x02: 0x%04x (SPIC)\n",
|
|
mmio_readw(ich_spibar + 2));
|
|
msg_pdbg("0x04: 0x%08x (SPIA)\n",
|
|
mmio_readl(ich_spibar + 4));
|
|
for (i = 0; i < 8; i++) {
|
|
int offs;
|
|
offs = 8 + (i * 8);
|
|
msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs,
|
|
mmio_readl(ich_spibar + offs), i);
|
|
msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4,
|
|
mmio_readl(ich_spibar + offs + 4), i);
|
|
}
|
|
ichspi_bbar = mmio_readl(ich_spibar + 0x50);
|
|
msg_pdbg("0x50: 0x%08x (BBAR)\n",
|
|
ichspi_bbar);
|
|
msg_pdbg("0x54: 0x%04x (PREOP)\n",
|
|
mmio_readw(ich_spibar + 0x54));
|
|
msg_pdbg("0x56: 0x%04x (OPTYPE)\n",
|
|
mmio_readw(ich_spibar + 0x56));
|
|
msg_pdbg("0x58: 0x%08x (OPMENU)\n",
|
|
mmio_readl(ich_spibar + 0x58));
|
|
msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n",
|
|
mmio_readl(ich_spibar + 0x5c));
|
|
for (i = 0; i < 3; i++) {
|
|
int offs;
|
|
offs = 0x60 + (i * 4);
|
|
msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs,
|
|
mmio_readl(ich_spibar + offs), i);
|
|
}
|
|
if (mmio_readw(ich_spibar) & (1 << 15)) {
|
|
msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n");
|
|
ichspi_lock = 1;
|
|
}
|
|
ich_init_opcodes();
|
|
ich_set_bbar(0);
|
|
register_spi_programmer(&spi_programmer_ich7);
|
|
break;
|
|
case CHIPSET_ICH8:
|
|
default: /* Future version might behave the same */
|
|
arg = extract_programmer_param("ich_spi_mode");
|
|
if (arg && !strcmp(arg, "hwseq")) {
|
|
ich_spi_mode = ich_hwseq;
|
|
msg_pspew("user selected hwseq\n");
|
|
} else if (arg && !strcmp(arg, "swseq")) {
|
|
ich_spi_mode = ich_swseq;
|
|
msg_pspew("user selected swseq\n");
|
|
} else if (arg && !strcmp(arg, "auto")) {
|
|
msg_pspew("user selected auto\n");
|
|
ich_spi_mode = ich_auto;
|
|
} else if (arg && !strlen(arg)) {
|
|
msg_perr("Missing argument for ich_spi_mode.\n");
|
|
free(arg);
|
|
return ERROR_FATAL;
|
|
} else if (arg) {
|
|
msg_perr("Unknown argument for ich_spi_mode: %s\n",
|
|
arg);
|
|
free(arg);
|
|
return ERROR_FATAL;
|
|
}
|
|
free(arg);
|
|
|
|
arg = extract_programmer_param("ich_spi_force");
|
|
if (arg && !strcmp(arg, "yes")) {
|
|
ich_spi_force = 1;
|
|
msg_pspew("ich_spi_force enabled.\n");
|
|
} else if (arg && !strlen(arg)) {
|
|
msg_perr("Missing argument for ich_spi_force.\n");
|
|
free(arg);
|
|
return ERROR_FATAL;
|
|
} else if (arg) {
|
|
msg_perr("Unknown argument for ich_spi_force: \"%s\" "
|
|
"(not \"yes\").\n", arg);
|
|
free(arg);
|
|
return ERROR_FATAL;
|
|
}
|
|
free(arg);
|
|
|
|
tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFS);
|
|
msg_pdbg("0x04: 0x%04x (HSFS)\n", tmp2);
|
|
prettyprint_ich9_reg_hsfs(tmp2);
|
|
if (tmp2 & HSFS_FLOCKDN) {
|
|
msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n");
|
|
ichspi_lock = 1;
|
|
}
|
|
if (tmp2 & HSFS_FDV)
|
|
desc_valid = 1;
|
|
if (!(tmp2 & HSFS_FDOPSS) && desc_valid)
|
|
msg_pinfo("The Flash Descriptor Security Override "
|
|
"Strap-Pin is set. Restrictions implied\n"
|
|
"by the FRAP and FREG registers are NOT in "
|
|
"effect. Please note that Protected\n"
|
|
"Range (PR) restrictions still apply.\n");
|
|
ich_init_opcodes();
|
|
|
|
if (desc_valid) {
|
|
tmp2 = mmio_readw(ich_spibar + ICH9_REG_HSFC);
|
|
msg_pdbg("0x06: 0x%04x (HSFC)\n", tmp2);
|
|
prettyprint_ich9_reg_hsfc(tmp2);
|
|
}
|
|
|
|
tmp = mmio_readl(ich_spibar + ICH9_REG_FADDR);
|
|
msg_pdbg("0x08: 0x%08x (FADDR)\n", tmp);
|
|
|
|
if (desc_valid) {
|
|
tmp = mmio_readl(ich_spibar + ICH9_REG_FRAP);
|
|
msg_pdbg("0x50: 0x%08x (FRAP)\n", tmp);
|
|
msg_pdbg("BMWAG 0x%02x, ", ICH_BMWAG(tmp));
|
|
msg_pdbg("BMRAG 0x%02x, ", ICH_BMRAG(tmp));
|
|
msg_pdbg("BRWA 0x%02x, ", ICH_BRWA(tmp));
|
|
msg_pdbg("BRRA 0x%02x\n", ICH_BRRA(tmp));
|
|
|
|
/* Handle FREGx and FRAP registers */
|
|
for (i = 0; i < 5; i++)
|
|
ich_spi_rw_restricted |= ich9_handle_frap(tmp, i);
|
|
}
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
/* if not locked down try to disable PR locks first */
|
|
if (!ichspi_lock)
|
|
ich9_set_pr(i, 0, 0);
|
|
ich_spi_rw_restricted |= ich9_handle_pr(i);
|
|
}
|
|
|
|
if (ich_spi_rw_restricted) {
|
|
msg_pinfo("Please send a verbose log to "
|
|
"flashrom@flashrom.org if this board is not "
|
|
"listed on\n"
|
|
"http://flashrom.org/Supported_hardware#Supported_mainboards "
|
|
"yet.\n");
|
|
if (!ich_spi_force)
|
|
programmer_may_write = 0;
|
|
msg_pinfo("Writes have been disabled. You can enforce "
|
|
"write support with the\nich_spi_force "
|
|
"programmer option, but it will most likely "
|
|
"harm your hardware!\nIf you force flashrom "
|
|
"you will get no support if something "
|
|
"breaks.\n");
|
|
if (ich_spi_force)
|
|
msg_pinfo("Continuing with write support "
|
|
"because the user forced us to!\n");
|
|
}
|
|
|
|
tmp = mmio_readl(ich_spibar + ICH9_REG_SSFS);
|
|
msg_pdbg("0x90: 0x%02x (SSFS)\n", tmp & 0xff);
|
|
prettyprint_ich9_reg_ssfs(tmp);
|
|
if (tmp & SSFS_FCERR) {
|
|
msg_pdbg("Clearing SSFS.FCERR\n");
|
|
mmio_writeb(SSFS_FCERR, ich_spibar + ICH9_REG_SSFS);
|
|
}
|
|
msg_pdbg("0x91: 0x%06x (SSFC)\n", tmp >> 8);
|
|
prettyprint_ich9_reg_ssfc(tmp);
|
|
|
|
msg_pdbg("0x94: 0x%04x (PREOP)\n",
|
|
mmio_readw(ich_spibar + ICH9_REG_PREOP));
|
|
msg_pdbg("0x96: 0x%04x (OPTYPE)\n",
|
|
mmio_readw(ich_spibar + ICH9_REG_OPTYPE));
|
|
msg_pdbg("0x98: 0x%08x (OPMENU)\n",
|
|
mmio_readl(ich_spibar + ICH9_REG_OPMENU));
|
|
msg_pdbg("0x9C: 0x%08x (OPMENU+4)\n",
|
|
mmio_readl(ich_spibar + ICH9_REG_OPMENU + 4));
|
|
if (ich_generation == CHIPSET_ICH8 && desc_valid) {
|
|
tmp = mmio_readl(ich_spibar + ICH8_REG_VSCC);
|
|
msg_pdbg("0xC1: 0x%08x (VSCC)\n", tmp);
|
|
msg_pdbg("VSCC: ");
|
|
prettyprint_ich_reg_vscc(tmp, MSG_DEBUG);
|
|
} else {
|
|
ichspi_bbar = mmio_readl(ich_spibar + ICH9_REG_BBAR);
|
|
msg_pdbg("0xA0: 0x%08x (BBAR)\n",
|
|
ichspi_bbar);
|
|
|
|
if (desc_valid) {
|
|
tmp = mmio_readl(ich_spibar + ICH9_REG_LVSCC);
|
|
msg_pdbg("0xC4: 0x%08x (LVSCC)\n", tmp);
|
|
msg_pdbg("LVSCC: ");
|
|
prettyprint_ich_reg_vscc(tmp, MSG_DEBUG);
|
|
|
|
tmp = mmio_readl(ich_spibar + ICH9_REG_UVSCC);
|
|
msg_pdbg("0xC8: 0x%08x (UVSCC)\n", tmp);
|
|
msg_pdbg("UVSCC: ");
|
|
prettyprint_ich_reg_vscc(tmp, MSG_DEBUG);
|
|
|
|
tmp = mmio_readl(ich_spibar + ICH9_REG_FPB);
|
|
msg_pdbg("0xD0: 0x%08x (FPB)\n", tmp);
|
|
}
|
|
ich_set_bbar(0);
|
|
}
|
|
|
|
msg_pdbg("\n");
|
|
if (desc_valid) {
|
|
if (read_ich_descriptors_via_fdo(ich_spibar, &desc) ==
|
|
ICH_RET_OK)
|
|
prettyprint_ich_descriptors(CHIPSET_ICH_UNKNOWN,
|
|
&desc);
|
|
/* If the descriptor is valid and indicates multiple
|
|
* flash devices we need to use hwseq to be able to
|
|
* access the second flash device.
|
|
*/
|
|
if (ich_spi_mode == ich_auto && desc.content.NC != 0) {
|
|
msg_pinfo("Enabling hardware sequencing due to "
|
|
"multiple flash chips detected.\n");
|
|
ich_spi_mode = ich_hwseq;
|
|
}
|
|
}
|
|
|
|
if (ich_spi_mode == ich_auto && ichspi_lock &&
|
|
ich_missing_opcodes()) {
|
|
msg_pinfo("Enabling hardware sequencing because "
|
|
"some important opcode is locked.\n");
|
|
ich_spi_mode = ich_hwseq;
|
|
}
|
|
|
|
if (ich_spi_mode == ich_hwseq) {
|
|
if (!desc_valid) {
|
|
msg_perr("Hardware sequencing was requested "
|
|
"but the flash descriptor is not "
|
|
"valid. Aborting.\n");
|
|
return ERROR_FATAL;
|
|
}
|
|
hwseq_data.size_comp0 = getFCBA_component_density(&desc, 0);
|
|
hwseq_data.size_comp1 = getFCBA_component_density(&desc, 1);
|
|
register_opaque_programmer(&opaque_programmer_ich_hwseq);
|
|
} else {
|
|
register_spi_programmer(&spi_programmer_ich9);
|
|
}
|
|
break;
|
|
}
|
|
|
|
old = pci_read_byte(dev, 0xdc);
|
|
msg_pdbg("SPI Read Configuration: ");
|
|
new = (old >> 2) & 0x3;
|
|
switch (new) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
msg_pdbg("prefetching %sabled, caching %sabled, ",
|
|
(new & 0x2) ? "en" : "dis",
|
|
(new & 0x1) ? "dis" : "en");
|
|
break;
|
|
default:
|
|
msg_pdbg("invalid prefetching/caching settings, ");
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct spi_programmer spi_programmer_via = {
|
|
.type = SPI_CONTROLLER_VIA,
|
|
.max_data_read = 16,
|
|
.max_data_write = 16,
|
|
.command = ich_spi_send_command,
|
|
.multicommand = ich_spi_send_multicommand,
|
|
.read = default_spi_read,
|
|
.write_256 = default_spi_write_256,
|
|
.write_aai = default_spi_write_aai,
|
|
};
|
|
|
|
int via_init_spi(struct pci_dev *dev, uint32_t mmio_base)
|
|
{
|
|
int i;
|
|
|
|
ich_spibar = physmap("VIA SPI MMIO registers", mmio_base, 0x70);
|
|
/* Do we really need no write enable? Like the LPC one at D17F0 0x40 */
|
|
|
|
/* Not sure if it speaks all these bus protocols. */
|
|
internal_buses_supported = BUS_LPC | BUS_FWH;
|
|
ich_generation = CHIPSET_ICH7;
|
|
register_spi_programmer(&spi_programmer_via);
|
|
|
|
msg_pdbg("0x00: 0x%04x (SPIS)\n", mmio_readw(ich_spibar + 0));
|
|
msg_pdbg("0x02: 0x%04x (SPIC)\n", mmio_readw(ich_spibar + 2));
|
|
msg_pdbg("0x04: 0x%08x (SPIA)\n", mmio_readl(ich_spibar + 4));
|
|
for (i = 0; i < 2; i++) {
|
|
int offs;
|
|
offs = 8 + (i * 8);
|
|
msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs,
|
|
mmio_readl(ich_spibar + offs), i);
|
|
msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4,
|
|
mmio_readl(ich_spibar + offs + 4), i);
|
|
}
|
|
ichspi_bbar = mmio_readl(ich_spibar + 0x50);
|
|
msg_pdbg("0x50: 0x%08x (BBAR)\n", ichspi_bbar);
|
|
msg_pdbg("0x54: 0x%04x (PREOP)\n", mmio_readw(ich_spibar + 0x54));
|
|
msg_pdbg("0x56: 0x%04x (OPTYPE)\n", mmio_readw(ich_spibar + 0x56));
|
|
msg_pdbg("0x58: 0x%08x (OPMENU)\n", mmio_readl(ich_spibar + 0x58));
|
|
msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", mmio_readl(ich_spibar + 0x5c));
|
|
for (i = 0; i < 3; i++) {
|
|
int offs;
|
|
offs = 0x60 + (i * 4);
|
|
msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs,
|
|
mmio_readl(ich_spibar + offs), i);
|
|
}
|
|
msg_pdbg("0x6c: 0x%04x (CLOCK/DEBUG)\n",
|
|
mmio_readw(ich_spibar + 0x6c));
|
|
if (mmio_readw(ich_spibar) & (1 << 15)) {
|
|
msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n");
|
|
ichspi_lock = 1;
|
|
}
|
|
|
|
ich_set_bbar(0);
|
|
ich_init_opcodes();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|