mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-26 22:52:34 +02:00

This is follow up (or fix) for commit 26a1eb514ccefc61b110068cf0eea73c397ba045 When probing opcode, all opcodes in POSSIBLE_OPCODES are reported as supported, even if the opcode is not in curopcodes. This is relying on reprogramming on-the-fly to handle the gap between POSSIBLE_OPCODES and curopcodes. However, for locked chipsets on-the-fly is not happening (is not possible, since list of opcodes is locked), so we can't rely on it. So, we need to check whether chipset is locked. Ticket: https://ticket.coreboot.org/issues/573 Change-Id: I701a86f030cfef43a1158bf075287ade569254e6 Signed-off-by: Anastasia Klimchuk <aklm@flashrom.org> Tested-by: Matt DeVillier <matt.devillier@gmail.com> Reviewed-on: https://review.coreboot.org/c/flashrom/+/85592 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Nikolai Artemiev <nartemiev@google.com> Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org> Reviewed-by: Matt DeVillier <matt.devillier@gmail.com>
2501 lines
78 KiB
C
2501 lines
78 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com>
|
|
* Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com>
|
|
* Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com>
|
|
* Copyright (C) 2008 coresystems GmbH <info@coresystems.de>
|
|
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
|
|
* Copyright (C) 2011 Stefan Tauner
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
#include "flash.h"
|
|
#include "programmer.h"
|
|
#include "hwaccess_physmap.h"
|
|
#include "spi.h"
|
|
#include "ich_descriptors.h"
|
|
|
|
/* Apollo Lake */
|
|
#define APL_REG_FREG12 0xe0 /* 32 Bytes Flash Region 12 */
|
|
|
|
/* Sunrise Point */
|
|
|
|
/* Added HSFS Status bits */
|
|
#define HSFS_WRSDIS_OFF 11 /* 11: Flash Configuration Lock-Down */
|
|
#define HSFS_WRSDIS (0x1 << HSFS_WRSDIS_OFF)
|
|
#define HSFS_PRR34_LOCKDN_OFF 12 /* 12: PRR3 PRR4 Lock-Down */
|
|
#define HSFS_PRR34_LOCKDN (0x1 << HSFS_PRR34_LOCKDN_OFF)
|
|
/* HSFS_BERASE vanished */
|
|
|
|
/*
|
|
* HSFC and HSFS 16-bit registers are combined into the 32-bit
|
|
* BIOS_HSFSTS_CTL register in the Sunrise Point datasheet,
|
|
* however we still treat them separately in order to reuse code.
|
|
*/
|
|
|
|
/*
|
|
* HSFC Control bits
|
|
*
|
|
* FCYCLE is a 2 bit field (HSFC bits 1-2) on ICH9 and 4 bit field
|
|
* (HSFC bits 1-4) on PCH100.
|
|
*
|
|
* ICH9 and PCH100 use the same FCYCLE values for flash operations,
|
|
* however FCYCLE values above 3 are only supported by PCH100.
|
|
*
|
|
* 0: SPI Read
|
|
* 2: SPI Write
|
|
* 3: SPI Erase 4K
|
|
* 4: SPI Erase 64K
|
|
* 6: SPI RDID
|
|
* 7: SPI Write Status
|
|
* 8: SPI Read Status
|
|
*/
|
|
#define HSFC_FGO_OFF 0
|
|
#define HSFC_FGO (0x1 << HSFC_FGO_OFF)
|
|
#define HSFC_FCYCLE_MASK(n) ((n) << HSFC_FCYCLE_OFF)
|
|
#define HSFC_FCYCLE_OFF 1
|
|
#define HSFC_CYCLE_READ HSFC_FCYCLE_MASK(0x0)
|
|
#define HSFC_CYCLE_WRITE HSFC_FCYCLE_MASK(0x2)
|
|
#define HSFC_CYCLE_BLOCK_ERASE HSFC_FCYCLE_MASK(0x3)
|
|
#define HSFC_CYCLE_RDID HSFC_FCYCLE_MASK(0x6)
|
|
#define HSFC_CYCLE_WR_STATUS HSFC_FCYCLE_MASK(0x7)
|
|
#define HSFC_CYCLE_RD_STATUS HSFC_FCYCLE_MASK(0x8)
|
|
|
|
/* PCH100 controller register definition */
|
|
#define PCH100_HSFC_FCYCLE_OFF 1
|
|
#define PCH100_HSFC_FCYCLE_BIT_WIDTH 0xf
|
|
#define PCH100_HSFC_FCYCLE HSFC_FCYCLE_MASK(PCH100_HSFC_FCYCLE_BIT_WIDTH)
|
|
/* New HSFC Control bit */
|
|
#define PCH100_HSFC_WET_OFF (21 - 16) /* 5: Write Enable Type */
|
|
#define PCH100_HSFC_WET (0x1 << PCH100_HSFC_WET_OFF)
|
|
|
|
#define PCH100_FADDR_FLA 0x07ffffff
|
|
|
|
#define PCH100_REG_DLOCK 0x0c /* 32 Bits Discrete Lock Bits */
|
|
#define DLOCK_BMWAG_LOCKDN_OFF 0
|
|
#define DLOCK_BMWAG_LOCKDN (0x1 << DLOCK_BMWAG_LOCKDN_OFF)
|
|
#define DLOCK_BMRAG_LOCKDN_OFF 1
|
|
#define DLOCK_BMRAG_LOCKDN (0x1 << DLOCK_BMRAG_LOCKDN_OFF)
|
|
#define DLOCK_SBMWAG_LOCKDN_OFF 2
|
|
#define DLOCK_SBMWAG_LOCKDN (0x1 << DLOCK_SBMWAG_LOCKDN_OFF)
|
|
#define DLOCK_SBMRAG_LOCKDN_OFF 3
|
|
#define DLOCK_SBMRAG_LOCKDN (0x1 << DLOCK_SBMRAG_LOCKDN_OFF)
|
|
#define DLOCK_PR0_LOCKDN_OFF 8
|
|
#define DLOCK_PR0_LOCKDN (0x1 << DLOCK_PR0_LOCKDN_OFF)
|
|
#define DLOCK_PR1_LOCKDN_OFF 9
|
|
#define DLOCK_PR1_LOCKDN (0x1 << DLOCK_PR1_LOCKDN_OFF)
|
|
#define DLOCK_PR2_LOCKDN_OFF 10
|
|
#define DLOCK_PR2_LOCKDN (0x1 << DLOCK_PR2_LOCKDN_OFF)
|
|
#define DLOCK_PR3_LOCKDN_OFF 11
|
|
#define DLOCK_PR3_LOCKDN (0x1 << DLOCK_PR3_LOCKDN_OFF)
|
|
#define DLOCK_PR4_LOCKDN_OFF 12
|
|
#define DLOCK_PR4_LOCKDN (0x1 << DLOCK_PR4_LOCKDN_OFF)
|
|
#define DLOCK_SSEQ_LOCKDN_OFF 16
|
|
#define DLOCK_SSEQ_LOCKDN (0x1 << DLOCK_SSEQ_LOCKDN_OFF)
|
|
|
|
#define PCH100_REG_FPR0 0x84 /* 32 Bits Protected Range 0 */
|
|
#define PCH100_REG_GPR0 0x98 /* 32 Bits Global Protected Range 0 */
|
|
|
|
#define PCH100_REG_SSFSC 0xA0 /* 32 Bits Status (8) + Control (24) */
|
|
#define PCH100_REG_PREOP 0xA4 /* 16 Bits */
|
|
#define PCH100_REG_OPTYPE 0xA6 /* 16 Bits */
|
|
#define PCH100_REG_OPMENU 0xA8 /* 64 Bits */
|
|
|
|
/* ICH9 controller register definition */
|
|
#define ICH9_REG_HSFS 0x04 /* 16 Bits Hardware Sequencing Flash Status */
|
|
#define HSFS_FDONE_OFF 0 /* 0: Flash Cycle Done */
|
|
#define HSFS_FDONE (0x1 << HSFS_FDONE_OFF)
|
|
#define HSFS_FCERR_OFF 1 /* 1: Flash Cycle Error */
|
|
#define HSFS_FCERR (0x1 << HSFS_FCERR_OFF)
|
|
#define HSFS_AEL_OFF 2 /* 2: Access Error Log */
|
|
#define HSFS_AEL (0x1 << HSFS_AEL_OFF)
|
|
#define HSFS_BERASE_OFF 3 /* 3-4: Block/Sector Erase Size */
|
|
#define HSFS_BERASE (0x3 << HSFS_BERASE_OFF)
|
|
#define HSFS_SCIP_OFF 5 /* 5: SPI Cycle In Progress */
|
|
#define HSFS_SCIP (0x1 << HSFS_SCIP_OFF)
|
|
/* 6-12: reserved */
|
|
#define HSFS_FDOPSS_OFF 13 /* 13: Flash Descriptor Override Pin-Strap Status */
|
|
#define HSFS_FDOPSS (0x1 << HSFS_FDOPSS_OFF)
|
|
#define HSFS_FDV_OFF 14 /* 14: Flash Descriptor Valid */
|
|
#define HSFS_FDV (0x1 << HSFS_FDV_OFF)
|
|
#define HSFS_FLOCKDN_OFF 15 /* 15: Flash Configuration Lock-Down */
|
|
#define HSFS_FLOCKDN (0x1 << HSFS_FLOCKDN_OFF)
|
|
|
|
#define ICH9_REG_HSFC 0x06 /* 16 Bits Hardware Sequencing Flash Control */
|
|
|
|
/* 0: Flash Cycle Go */
|
|
/* 1-2: FLASH Cycle */
|
|
#define ICH9_HSFC_FCYCLE_OFF 1
|
|
#define ICH9_HSFC_FCYCLE_BIT_WIDTH 3
|
|
#define ICH9_HSFC_FCYCLE HSFC_FCYCLE_MASK(ICH9_HSFC_FCYCLE_BIT_WIDTH)
|
|
/* 3-7: reserved */
|
|
#define HSFC_FDBC_OFF 8 /* 8-13: Flash Data Byte Count */
|
|
#define HSFC_FDBC (0x3f << HSFC_FDBC_OFF)
|
|
#define HSFC_FDBC_VAL(n) (((n) << HSFC_FDBC_OFF) & HSFC_FDBC)
|
|
/* 14: reserved */
|
|
#define HSFC_SME_OFF 15 /* 15: SPI SMI# Enable */
|
|
#define HSFC_SME (0x1 << HSFC_SME_OFF)
|
|
|
|
#define ICH9_REG_FADDR 0x08 /* 32 Bits */
|
|
#define ICH9_FADDR_FLA 0x01ffffff
|
|
#define ICH9_REG_FDATA0 0x10 /* 64 Bytes */
|
|
|
|
#define ICH_REG_BIOS_BM_RAP 0x118 /* 16 Bits BIOS Master Read Access Permissions */
|
|
#define ICH_REG_BIOS_BM_WAP 0x11c /* 16 Bits BIOS Master Write Access Permissions */
|
|
|
|
#define ICH9_REG_FRAP 0x50 /* 32 Bytes Flash Region Access Permissions */
|
|
#define ICH9_REG_FREG0 0x54 /* 32 Bytes Flash Region 0 */
|
|
|
|
#define ICH9_REG_PR0 0x74 /* 32 Bytes Protected Range 0 */
|
|
#define PR_WP_OFF 31 /* 31: write protection enable */
|
|
#define PR_RP_OFF 15 /* 15: read protection enable */
|
|
|
|
#define ICH9_REG_SSFS 0x90 /* 08 Bits */
|
|
#define SSFS_SCIP_OFF 0 /* SPI Cycle In Progress */
|
|
#define SSFS_SCIP (0x1 << SSFS_SCIP_OFF)
|
|
#define SSFS_FDONE_OFF 2 /* Cycle Done Status */
|
|
#define SSFS_FDONE (0x1 << SSFS_FDONE_OFF)
|
|
#define SSFS_FCERR_OFF 3 /* Flash Cycle Error */
|
|
#define SSFS_FCERR (0x1 << SSFS_FCERR_OFF)
|
|
#define SSFS_AEL_OFF 4 /* Access Error Log */
|
|
#define SSFS_AEL (0x1 << SSFS_AEL_OFF)
|
|
/* The following bits are reserved in SSFS: 1,5-7. */
|
|
#define SSFS_RESERVED_MASK 0x000000e2
|
|
|
|
#define ICH9_REG_SSFC 0x91 /* 24 Bits */
|
|
/* We combine SSFS and SSFC to one 32-bit word,
|
|
* therefore SSFC bits are off by 8. */
|
|
/* 0: reserved */
|
|
#define SSFC_SCGO_OFF (1 + 8) /* 1: SPI Cycle Go */
|
|
#define SSFC_SCGO (0x1 << SSFC_SCGO_OFF)
|
|
#define SSFC_ACS_OFF (2 + 8) /* 2: Atomic Cycle Sequence */
|
|
#define SSFC_ACS (0x1 << SSFC_ACS_OFF)
|
|
#define SSFC_SPOP_OFF (3 + 8) /* 3: Sequence Prefix Opcode Pointer */
|
|
#define SSFC_SPOP (0x1 << SSFC_SPOP_OFF)
|
|
#define SSFC_COP_OFF (4 + 8) /* 4-6: Cycle Opcode Pointer */
|
|
#define SSFC_COP (0x7 << SSFC_COP_OFF)
|
|
/* 7: reserved */
|
|
#define SSFC_DBC_OFF (8 + 8) /* 8-13: Data Byte Count */
|
|
#define SSFC_DBC (0x3f << SSFC_DBC_OFF)
|
|
#define SSFC_DS_OFF (14 + 8) /* 14: Data Cycle */
|
|
#define SSFC_DS (0x1 << SSFC_DS_OFF)
|
|
#define SSFC_SME_OFF (15 + 8) /* 15: SPI SMI# Enable */
|
|
#define SSFC_SME (0x1 << SSFC_SME_OFF)
|
|
#define SSFC_SCF_OFF (16 + 8) /* 16-18: SPI Cycle Frequency */
|
|
#define SSFC_SCF (0x7 << SSFC_SCF_OFF)
|
|
#define SSFC_SCF_20MHZ 0x00000000
|
|
#define SSFC_SCF_33MHZ 0x01000000
|
|
/* 19-23: reserved */
|
|
#define SSFC_RESERVED_MASK 0xf8008100
|
|
|
|
#define ICH9_REG_PREOP 0x94 /* 16 Bits */
|
|
#define ICH9_REG_OPTYPE 0x96 /* 16 Bits */
|
|
#define ICH9_REG_OPMENU 0x98 /* 64 Bits */
|
|
|
|
#define ICH9_REG_BBAR 0xA0 /* 32 Bits BIOS Base Address Configuration */
|
|
#define BBAR_MASK 0x00ffff00 /* 8-23: Bottom of System Flash */
|
|
|
|
#define ICH8_REG_VSCC 0xC1 /* 32 Bits Vendor Specific Component Capabilities */
|
|
#define ICH9_REG_LVSCC 0xC4 /* 32 Bits Host Lower Vendor Specific Component Capabilities */
|
|
#define ICH9_REG_UVSCC 0xC8 /* 32 Bits Host Upper Vendor Specific Component Capabilities */
|
|
/* The individual fields of the VSCC registers are defined in the file
|
|
* ich_descriptors.h. The reason is that the same layout is also used in the
|
|
* flash descriptor to define the properties of the different flash chips
|
|
* supported. The BIOS (or the ME?) is responsible to populate the ICH registers
|
|
* with the information from the descriptor on startup depending on the actual
|
|
* chip(s) detected. */
|
|
|
|
#define ICH9_REG_FPB 0xD0 /* 32 Bits Flash Partition Boundary */
|
|
#define FPB_FPBA_OFF 0 /* 0-12: Block/Sector Erase Size */
|
|
#define FPB_FPBA (0x1FFF << FPB_FPBA_OFF)
|
|
|
|
// ICH9R SPI commands
|
|
#define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0
|
|
#define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1
|
|
#define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2
|
|
#define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3
|
|
|
|
// ICH7 registers
|
|
#define ICH7_REG_SPIS 0x00 /* 16 Bits */
|
|
#define SPIS_SCIP 0x0001
|
|
#define SPIS_GRANT 0x0002
|
|
#define SPIS_CDS 0x0004
|
|
#define SPIS_FCERR 0x0008
|
|
#define SPIS_RESERVED_MASK 0x7ff0
|
|
|
|
/* VIA SPI is compatible with ICH7, but maxdata
|
|
to transfer is 16 bytes.
|
|
|
|
DATA byte count on ICH7 is 8:13, on VIA 8:11
|
|
|
|
bit 12 is port select CS0 CS1
|
|
bit 13 is FAST READ enable
|
|
bit 7 is used with fast read and one shot controls CS de-assert?
|
|
*/
|
|
|
|
#define ICH7_REG_SPIC 0x02 /* 16 Bits */
|
|
#define SPIC_SCGO 0x0002
|
|
#define SPIC_ACS 0x0004
|
|
#define SPIC_SPOP 0x0008
|
|
#define SPIC_DS 0x4000
|
|
|
|
#define ICH7_REG_SPIA 0x04 /* 32 Bits */
|
|
#define ICH7_REG_SPID0 0x08 /* 64 Bytes */
|
|
#define ICH7_REG_PREOP 0x54 /* 16 Bits */
|
|
#define ICH7_REG_OPTYPE 0x56 /* 16 Bits */
|
|
#define ICH7_REG_OPMENU 0x58 /* 64 Bits */
|
|
|
|
enum ich_access_protection {
|
|
NO_PROT = 0,
|
|
READ_PROT = 1,
|
|
WRITE_PROT = 2,
|
|
LOCKED = 3,
|
|
};
|
|
|
|
/* ICH SPI configuration lock-down. May be set during chipset enabling. */
|
|
static bool ichspi_lock = false;
|
|
|
|
static enum ich_chipset ich_generation = CHIPSET_ICH_UNKNOWN;
|
|
static uint32_t ichspi_bbar;
|
|
|
|
static void *ich_spibar = NULL;
|
|
|
|
typedef struct _OPCODE {
|
|
uint8_t opcode; //This commands spi opcode
|
|
uint8_t spi_type; //This commands spi type
|
|
uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1
|
|
} OPCODE;
|
|
|
|
/* Suggested opcode definition:
|
|
* Preop 1: Write Enable
|
|
* Preop 2: Write Status register enable
|
|
*
|
|
* OP 0: Write address
|
|
* OP 1: Read Address
|
|
* OP 2: ERASE block
|
|
* OP 3: Read Status register
|
|
* OP 4: Read ID
|
|
* OP 5: Write Status register
|
|
* OP 6: chip private (read JEDEC id)
|
|
* OP 7: Chip erase
|
|
*/
|
|
typedef struct _OPCODES {
|
|
uint8_t preop[2];
|
|
OPCODE opcode[8];
|
|
} OPCODES;
|
|
|
|
static OPCODES *curopcodes = NULL;
|
|
|
|
/* HW access functions */
|
|
static uint32_t REGREAD32(int X)
|
|
{
|
|
return mmio_readl(ich_spibar + X);
|
|
}
|
|
|
|
static uint16_t REGREAD16(int X)
|
|
{
|
|
return mmio_readw(ich_spibar + X);
|
|
}
|
|
|
|
static uint16_t REGREAD8(int X)
|
|
{
|
|
return mmio_readb(ich_spibar + X);
|
|
}
|
|
|
|
#define REGWRITE32(off, val) mmio_writel(val, ich_spibar+(off))
|
|
#define REGWRITE16(off, val) mmio_writew(val, ich_spibar+(off))
|
|
#define REGWRITE8(off, val) mmio_writeb(val, ich_spibar+(off))
|
|
|
|
/* Common SPI functions */
|
|
|
|
static int find_opcode(OPCODES *op, uint8_t opcode)
|
|
{
|
|
int a;
|
|
|
|
if (op == NULL) {
|
|
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
for (a = 0; a < 8; a++) {
|
|
if (op->opcode[a].opcode == opcode)
|
|
return a;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int find_preop(OPCODES *op, uint8_t preop)
|
|
{
|
|
int a;
|
|
|
|
if (op == NULL) {
|
|
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
for (a = 0; a < 2; a++) {
|
|
if (op->preop[a] == preop)
|
|
return a;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* for pairing opcodes with their required preop */
|
|
struct preop_opcode_pair {
|
|
uint8_t preop;
|
|
uint8_t opcode;
|
|
};
|
|
|
|
/* List of opcodes which need preopcodes and matching preopcodes. Unused. */
|
|
const struct preop_opcode_pair pops[] = {
|
|
{JEDEC_WREN, JEDEC_BYTE_PROGRAM},
|
|
{JEDEC_WREN, JEDEC_SE}, /* sector erase */
|
|
{JEDEC_WREN, JEDEC_BE_52}, /* block erase */
|
|
{JEDEC_WREN, JEDEC_BE_D8}, /* block erase */
|
|
{JEDEC_WREN, JEDEC_CE_60}, /* chip erase */
|
|
{JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */
|
|
/* FIXME: WRSR requires either EWSR or WREN depending on chip type. */
|
|
{JEDEC_WREN, JEDEC_WRSR},
|
|
{JEDEC_EWSR, JEDEC_WRSR},
|
|
{0,}
|
|
};
|
|
|
|
/* Reasonable default configuration. Needs ad-hoc modifications if we
|
|
* encounter unlisted opcodes. Fun.
|
|
*/
|
|
static OPCODES O_ST_M25P = {
|
|
{
|
|
JEDEC_WREN,
|
|
JEDEC_EWSR,
|
|
},
|
|
{
|
|
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
|
|
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
|
|
{JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
|
|
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
|
|
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
|
|
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
|
|
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
|
|
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
|
|
}
|
|
};
|
|
|
|
/* List of opcodes with their corresponding spi_type
|
|
* It is used to reprogram the chipset OPCODE table on-the-fly if an opcode
|
|
* is needed which is currently not in the chipset OPCODE table
|
|
*/
|
|
static const OPCODE POSSIBLE_OPCODES[] = {
|
|
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
|
|
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
|
|
{JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
|
|
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
|
|
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
|
|
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
|
|
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
|
|
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
|
|
{JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Sector erase
|
|
{JEDEC_BE_52, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Block erase
|
|
{JEDEC_AAI_WORD_PROGRAM, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Auto Address Increment
|
|
};
|
|
|
|
static OPCODES O_EXISTING = {};
|
|
|
|
/* pretty printing functions */
|
|
static void prettyprint_opcodes(OPCODES *ops)
|
|
{
|
|
OPCODE oc;
|
|
const char *t;
|
|
const char *a;
|
|
uint8_t i;
|
|
static const char *const spi_type[4] = {
|
|
"read w/o addr",
|
|
"write w/o addr",
|
|
"read w/ addr",
|
|
"write w/ addr"
|
|
};
|
|
static const char *const atomic_type[3] = {
|
|
"none",
|
|
" 0 ",
|
|
" 1 "
|
|
};
|
|
|
|
if (ops == NULL)
|
|
return;
|
|
|
|
msg_pdbg2(" OP Type Pre-OP\n");
|
|
for (i = 0; i < 8; i++) {
|
|
oc = ops->opcode[i];
|
|
t = (oc.spi_type > 3) ? "invalid" : spi_type[oc.spi_type];
|
|
a = (oc.atomic > 2) ? "invalid" : atomic_type[oc.atomic];
|
|
msg_pdbg2("op[%d]: 0x%02x, %s, %s\n", i, oc.opcode, t, a);
|
|
}
|
|
msg_pdbg2("Pre-OP 0: 0x%02x, Pre-OP 1: 0x%02x\n", ops->preop[0],
|
|
ops->preop[1]);
|
|
}
|
|
|
|
#define pprint_reg16(reg, bit, val, sep) msg_pdbg("%s=%"PRId16"" sep, #bit, (val & reg##_##bit) >> reg##_##bit##_OFF)
|
|
#define pprint_reg32(reg, bit, val, sep) msg_pdbg("%s=%"PRId32"" sep, #bit, (val & reg##_##bit) >> reg##_##bit##_OFF)
|
|
|
|
static void prettyprint_ich9_reg_hsfs(uint16_t reg_val, enum ich_chipset ich_gen)
|
|
{
|
|
msg_pdbg("HSFS: ");
|
|
pprint_reg16(HSFS, FDONE, reg_val, ", ");
|
|
pprint_reg16(HSFS, FCERR, reg_val, ", ");
|
|
pprint_reg16(HSFS, AEL, reg_val, ", ");
|
|
switch (ich_gen) {
|
|
case CHIPSET_100_SERIES_SUNRISE_POINT:
|
|
case CHIPSET_C620_SERIES_LEWISBURG:
|
|
case CHIPSET_C740_SERIES_EMMITSBURG:
|
|
case CHIPSET_300_SERIES_CANNON_POINT:
|
|
case CHIPSET_400_SERIES_COMET_POINT:
|
|
case CHIPSET_500_SERIES_TIGER_POINT:
|
|
case CHIPSET_ELKHART_LAKE:
|
|
break;
|
|
default:
|
|
pprint_reg16(HSFS, BERASE, reg_val, ", ");
|
|
break;
|
|
}
|
|
pprint_reg16(HSFS, SCIP, reg_val, ", ");
|
|
switch (ich_gen) {
|
|
case CHIPSET_100_SERIES_SUNRISE_POINT:
|
|
case CHIPSET_C620_SERIES_LEWISBURG:
|
|
case CHIPSET_C740_SERIES_EMMITSBURG:
|
|
case CHIPSET_300_SERIES_CANNON_POINT:
|
|
case CHIPSET_400_SERIES_COMET_POINT:
|
|
case CHIPSET_500_SERIES_TIGER_POINT:
|
|
case CHIPSET_ELKHART_LAKE:
|
|
pprint_reg16(HSFS, PRR34_LOCKDN, reg_val, ", ");
|
|
pprint_reg16(HSFS, WRSDIS, reg_val, ", ");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
pprint_reg16(HSFS, FDOPSS, reg_val, ", ");
|
|
pprint_reg16(HSFS, FDV, reg_val, ", ");
|
|
pprint_reg16(HSFS, FLOCKDN, reg_val, "\n");
|
|
}
|
|
|
|
static void prettyprint_ich9_reg_hsfc(uint16_t reg_val, enum ich_chipset ich_gen)
|
|
{
|
|
msg_pdbg("HSFC: ");
|
|
pprint_reg16(HSFC, FGO, reg_val, ", ");
|
|
switch (ich_gen) {
|
|
case CHIPSET_100_SERIES_SUNRISE_POINT:
|
|
case CHIPSET_C620_SERIES_LEWISBURG:
|
|
case CHIPSET_C740_SERIES_EMMITSBURG:
|
|
case CHIPSET_300_SERIES_CANNON_POINT:
|
|
case CHIPSET_400_SERIES_COMET_POINT:
|
|
case CHIPSET_500_SERIES_TIGER_POINT:
|
|
case CHIPSET_ELKHART_LAKE:
|
|
pprint_reg16(PCH100_HSFC, FCYCLE, reg_val, ", ");
|
|
pprint_reg16(PCH100_HSFC, WET, reg_val, ", ");
|
|
break;
|
|
default:
|
|
pprint_reg16(ICH9_HSFC, FCYCLE, reg_val, ", ");
|
|
break;
|
|
}
|
|
pprint_reg16(HSFC, FDBC, reg_val, ", ");
|
|
pprint_reg16(HSFC, SME, reg_val, "\n");
|
|
}
|
|
|
|
static void prettyprint_ich9_reg_ssfs(uint32_t reg_val)
|
|
{
|
|
msg_pdbg("SSFS: ");
|
|
pprint_reg32(SSFS, SCIP, reg_val, ", ");
|
|
pprint_reg32(SSFS, FDONE, reg_val, ", ");
|
|
pprint_reg32(SSFS, FCERR, reg_val, ", ");
|
|
pprint_reg32(SSFS, AEL, reg_val, "\n");
|
|
}
|
|
|
|
static void prettyprint_ich9_reg_ssfc(uint32_t reg_val)
|
|
{
|
|
msg_pdbg("SSFC: ");
|
|
pprint_reg32(SSFC, SCGO, reg_val, ", ");
|
|
pprint_reg32(SSFC, ACS, reg_val, ", ");
|
|
pprint_reg32(SSFC, SPOP, reg_val, ", ");
|
|
pprint_reg32(SSFC, COP, reg_val, ", ");
|
|
pprint_reg32(SSFC, DBC, reg_val, ", ");
|
|
pprint_reg32(SSFC, SME, reg_val, ", ");
|
|
pprint_reg32(SSFC, SCF, reg_val, "\n");
|
|
}
|
|
|
|
static void prettyprint_pch100_reg_dlock(const uint32_t reg_val)
|
|
{
|
|
msg_pdbg("DLOCK: ");
|
|
pprint_reg32(DLOCK, BMWAG_LOCKDN, reg_val, ", ");
|
|
pprint_reg32(DLOCK, BMRAG_LOCKDN, reg_val, ", ");
|
|
pprint_reg32(DLOCK, SBMWAG_LOCKDN, reg_val, ", ");
|
|
pprint_reg32(DLOCK, SBMRAG_LOCKDN, reg_val, ",\n ");
|
|
pprint_reg32(DLOCK, PR0_LOCKDN, reg_val, ", ");
|
|
pprint_reg32(DLOCK, PR1_LOCKDN, reg_val, ", ");
|
|
pprint_reg32(DLOCK, PR2_LOCKDN, reg_val, ", ");
|
|
pprint_reg32(DLOCK, PR3_LOCKDN, reg_val, ", ");
|
|
pprint_reg32(DLOCK, PR4_LOCKDN, reg_val, ",\n ");
|
|
pprint_reg32(DLOCK, SSEQ_LOCKDN, reg_val, "\n");
|
|
}
|
|
|
|
static struct swseq_data {
|
|
size_t reg_ssfsc;
|
|
size_t reg_preop;
|
|
size_t reg_optype;
|
|
size_t reg_opmenu;
|
|
} swseq_data;
|
|
|
|
static uint8_t lookup_spi_type(uint8_t opcode)
|
|
{
|
|
unsigned int a;
|
|
|
|
for (a = 0; a < ARRAY_SIZE(POSSIBLE_OPCODES); a++) {
|
|
if (POSSIBLE_OPCODES[a].opcode == opcode)
|
|
return POSSIBLE_OPCODES[a].spi_type;
|
|
}
|
|
|
|
return 0xFF;
|
|
}
|
|
|
|
static int program_opcodes(OPCODES *op, int enable_undo, enum ich_chipset ich_gen)
|
|
{
|
|
uint8_t a;
|
|
uint16_t preop, optype;
|
|
uint32_t opmenu[2];
|
|
|
|
/* Program Prefix Opcodes */
|
|
/* 0:7 Prefix Opcode 1 */
|
|
preop = (op->preop[0]);
|
|
/* 8:16 Prefix Opcode 2 */
|
|
preop |= ((uint16_t) op->preop[1]) << 8;
|
|
|
|
/* Program Opcode Types 0 - 7 */
|
|
optype = 0;
|
|
for (a = 0; a < 8; a++) {
|
|
optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2);
|
|
}
|
|
|
|
/* Program Allowable Opcodes 0 - 3 */
|
|
opmenu[0] = 0;
|
|
for (a = 0; a < 4; a++) {
|
|
opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8);
|
|
}
|
|
|
|
/* Program Allowable Opcodes 4 - 7 */
|
|
opmenu[1] = 0;
|
|
for (a = 4; a < 8; a++) {
|
|
opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8);
|
|
}
|
|
|
|
msg_pdbg2("\n%s: preop=%04x optype=%04x opmenu=%08"PRIx32"%08"PRIx32"\n", __func__, preop, optype, opmenu[0], opmenu[1]);
|
|
switch (ich_gen) {
|
|
case CHIPSET_ICH7:
|
|
case CHIPSET_TUNNEL_CREEK:
|
|
case CHIPSET_CENTERTON:
|
|
/* Register undo only for enable_undo=1, i.e. first call. */
|
|
if (enable_undo) {
|
|
rmmio_valw(ich_spibar + ICH7_REG_PREOP);
|
|
rmmio_valw(ich_spibar + ICH7_REG_OPTYPE);
|
|
rmmio_vall(ich_spibar + ICH7_REG_OPMENU);
|
|
rmmio_vall(ich_spibar + ICH7_REG_OPMENU + 4);
|
|
}
|
|
mmio_writew(preop, ich_spibar + ICH7_REG_PREOP);
|
|
mmio_writew(optype, ich_spibar + ICH7_REG_OPTYPE);
|
|
mmio_writel(opmenu[0], ich_spibar + ICH7_REG_OPMENU);
|
|
mmio_writel(opmenu[1], ich_spibar + ICH7_REG_OPMENU + 4);
|
|
break;
|
|
case CHIPSET_ICH8:
|
|
default: /* Future version might behave the same */
|
|
/* Register undo only for enable_undo=1, i.e. first call. */
|
|
if (enable_undo) {
|
|
rmmio_valw(ich_spibar + swseq_data.reg_preop);
|
|
rmmio_valw(ich_spibar + swseq_data.reg_optype);
|
|
rmmio_vall(ich_spibar + swseq_data.reg_opmenu);
|
|
rmmio_vall(ich_spibar + swseq_data.reg_opmenu + 4);
|
|
}
|
|
mmio_writew(preop, ich_spibar + swseq_data.reg_preop);
|
|
mmio_writew(optype, ich_spibar + swseq_data.reg_optype);
|
|
mmio_writel(opmenu[0], ich_spibar + swseq_data.reg_opmenu);
|
|
mmio_writel(opmenu[1], ich_spibar + swseq_data.reg_opmenu + 4);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int reprogram_opcode_on_the_fly(uint8_t opcode, unsigned int writecnt, unsigned int readcnt)
|
|
{
|
|
uint8_t spi_type;
|
|
|
|
spi_type = lookup_spi_type(opcode);
|
|
if (spi_type > 3) {
|
|
/* Try to guess spi type from read/write sizes.
|
|
* The following valid writecnt/readcnt combinations exist:
|
|
* writecnt = 4, readcnt >= 0
|
|
* writecnt = 1, readcnt >= 0
|
|
* writecnt >= 4, readcnt = 0
|
|
* writecnt >= 1, readcnt = 0
|
|
* writecnt >= 1 is guaranteed for all commands.
|
|
*/
|
|
if (readcnt == 0)
|
|
/* if readcnt=0 and writecount >= 4, we don't know if it is WRITE_NO_ADDRESS
|
|
* or WRITE_WITH_ADDRESS. But if we use WRITE_NO_ADDRESS and the first 3 data
|
|
* bytes are actual the address, they go to the bus anyhow
|
|
*/
|
|
spi_type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
|
|
else if (writecnt == 1) // and readcnt is > 0
|
|
spi_type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
|
|
else if (writecnt == 4) // and readcnt is > 0
|
|
spi_type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
|
|
else // we have an invalid case
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
int oppos = 4; // use the original position of JEDEC_REMS
|
|
curopcodes->opcode[oppos].opcode = opcode;
|
|
curopcodes->opcode[oppos].spi_type = spi_type;
|
|
program_opcodes(curopcodes, 0, ich_generation);
|
|
oppos = find_opcode(curopcodes, opcode);
|
|
msg_pdbg2("on-the-fly OPCODE (0x%02X) re-programmed, op-pos=%d\n", opcode, oppos);
|
|
return oppos;
|
|
}
|
|
|
|
/*
|
|
* Returns -1 if at least one mandatory opcode is inaccessible, 0 otherwise.
|
|
* FIXME: this should also check for
|
|
* - at least one probing opcode (RDID (incl. AT25F variants?), REMS, RES?)
|
|
* - at least one erasing opcode (lots.)
|
|
* - at least one program opcode (BYTE_PROGRAM, AAI_WORD_PROGRAM, ...?)
|
|
* - necessary preops? (EWSR, WREN, ...?)
|
|
*/
|
|
static int ich_missing_opcodes(void)
|
|
{
|
|
uint8_t ops[] = {
|
|
JEDEC_READ,
|
|
JEDEC_RDSR,
|
|
0
|
|
};
|
|
int i = 0;
|
|
while (ops[i] != 0) {
|
|
msg_pspew("checking for opcode 0x%02x\n", ops[i]);
|
|
if (find_opcode(curopcodes, ops[i]) == -1)
|
|
return -1;
|
|
i++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try to set BBAR (BIOS Base Address Register), but read back the value in case
|
|
* it didn't stick.
|
|
*/
|
|
static void ich_set_bbar(uint32_t min_addr, enum ich_chipset ich_gen)
|
|
{
|
|
int bbar_off;
|
|
switch (ich_gen) {
|
|
case CHIPSET_ICH7:
|
|
case CHIPSET_TUNNEL_CREEK:
|
|
case CHIPSET_CENTERTON:
|
|
bbar_off = 0x50;
|
|
break;
|
|
case CHIPSET_ICH8:
|
|
case CHIPSET_BAYTRAIL:
|
|
msg_pdbg("BBAR offset is unknown!\n");
|
|
return;
|
|
case CHIPSET_ICH9:
|
|
default: /* Future version might behave the same */
|
|
bbar_off = ICH9_REG_BBAR;
|
|
break;
|
|
}
|
|
|
|
ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & ~BBAR_MASK;
|
|
if (ichspi_bbar) {
|
|
msg_pdbg("Reserved bits in BBAR not zero: 0x%08"PRIx32"\n",
|
|
ichspi_bbar);
|
|
}
|
|
min_addr &= BBAR_MASK;
|
|
ichspi_bbar |= min_addr;
|
|
rmmio_writel(ichspi_bbar, ich_spibar + bbar_off);
|
|
ichspi_bbar = mmio_readl(ich_spibar + bbar_off) & BBAR_MASK;
|
|
|
|
/* We don't have any option except complaining. And if the write
|
|
* failed, the restore will fail as well, so no problem there.
|
|
*/
|
|
if (ichspi_bbar != min_addr)
|
|
msg_perr("Setting BBAR to 0x%08"PRIx32" failed! New value: 0x%08"PRIx32".\n",
|
|
min_addr, ichspi_bbar);
|
|
}
|
|
|
|
/* Create a struct OPCODES based on what we find in the locked down chipset. */
|
|
static int generate_opcodes(OPCODES * op, enum ich_chipset ich_gen)
|
|
{
|
|
int a;
|
|
uint16_t preop, optype;
|
|
uint32_t opmenu[2];
|
|
|
|
if (op == NULL) {
|
|
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
switch (ich_gen) {
|
|
case CHIPSET_ICH7:
|
|
case CHIPSET_TUNNEL_CREEK:
|
|
case CHIPSET_CENTERTON:
|
|
preop = REGREAD16(ICH7_REG_PREOP);
|
|
optype = REGREAD16(ICH7_REG_OPTYPE);
|
|
opmenu[0] = REGREAD32(ICH7_REG_OPMENU);
|
|
opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4);
|
|
break;
|
|
case CHIPSET_ICH8:
|
|
default: /* Future version might behave the same */
|
|
preop = REGREAD16(swseq_data.reg_preop);
|
|
optype = REGREAD16(swseq_data.reg_optype);
|
|
opmenu[0] = REGREAD32(swseq_data.reg_opmenu);
|
|
opmenu[1] = REGREAD32(swseq_data.reg_opmenu + 4);
|
|
break;
|
|
}
|
|
|
|
op->preop[0] = (uint8_t) preop;
|
|
op->preop[1] = (uint8_t) (preop >> 8);
|
|
|
|
for (a = 0; a < 8; a++) {
|
|
op->opcode[a].spi_type = (uint8_t) (optype & 0x3);
|
|
optype >>= 2;
|
|
}
|
|
|
|
for (a = 0; a < 4; a++) {
|
|
op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff);
|
|
opmenu[0] >>= 8;
|
|
}
|
|
|
|
for (a = 4; a < 8; a++) {
|
|
op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff);
|
|
opmenu[1] >>= 8;
|
|
}
|
|
|
|
/* No preopcodes used by default. */
|
|
for (a = 0; a < 8; a++)
|
|
op->opcode[a].atomic = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function generates OPCODES from or programs OPCODES to ICH according to
|
|
* the chipset's SPI configuration lock.
|
|
*
|
|
* It should be called before ICH sends any spi command.
|
|
*/
|
|
static int ich_init_opcodes(enum ich_chipset ich_gen)
|
|
{
|
|
int rc = 0;
|
|
OPCODES *curopcodes_done;
|
|
|
|
if (curopcodes)
|
|
return 0;
|
|
|
|
if (ichspi_lock) {
|
|
msg_pdbg("Reading OPCODES... ");
|
|
curopcodes_done = &O_EXISTING;
|
|
rc = generate_opcodes(curopcodes_done, ich_gen);
|
|
} else {
|
|
msg_pdbg("Programming OPCODES... ");
|
|
curopcodes_done = &O_ST_M25P;
|
|
rc = program_opcodes(curopcodes_done, 1, ich_gen);
|
|
}
|
|
|
|
if (rc) {
|
|
curopcodes = NULL;
|
|
msg_perr("failed\n");
|
|
return 1;
|
|
} else {
|
|
curopcodes = curopcodes_done;
|
|
msg_pdbg("done\n");
|
|
prettyprint_opcodes(curopcodes);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Fill len bytes from the data array into the fdata/spid registers.
|
|
*
|
|
* Note that using len > flash->mst->spi.max_data_write will trash the registers
|
|
* following the data registers.
|
|
*/
|
|
static void ich_fill_data(const uint8_t *data, int len, int reg0_off)
|
|
{
|
|
uint32_t temp32 = 0;
|
|
int i;
|
|
|
|
if (len <= 0)
|
|
return;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if ((i % 4) == 0)
|
|
temp32 = 0;
|
|
|
|
temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);
|
|
|
|
if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
|
|
REGWRITE32(reg0_off + (i - (i % 4)), temp32);
|
|
}
|
|
i--;
|
|
if ((i % 4) != 3) /* Write remaining data to regs. */
|
|
REGWRITE32(reg0_off + (i - (i % 4)), temp32);
|
|
}
|
|
|
|
/* Read len bytes from the fdata/spid register into the data array.
|
|
*
|
|
* Note that using len > flash->mst->spi.max_data_read will return garbage or
|
|
* may even crash.
|
|
*/
|
|
static void ich_read_data(uint8_t *data, int len, int reg0_off)
|
|
{
|
|
int i;
|
|
uint32_t temp32 = 0;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if ((i % 4) == 0)
|
|
temp32 = REGREAD32(reg0_off + i);
|
|
|
|
data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
|
|
}
|
|
}
|
|
|
|
static int ich7_run_opcode(OPCODE op, uint32_t offset,
|
|
uint8_t datalength, uint8_t * data, int maxdata)
|
|
{
|
|
bool write_cmd = false;
|
|
int timeout;
|
|
uint32_t temp32;
|
|
uint16_t temp16;
|
|
uint64_t opmenu;
|
|
int opcode_index;
|
|
|
|
/* Is it a write command? */
|
|
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|
|
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
|
|
write_cmd = true;
|
|
}
|
|
|
|
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
|
|
while ((REGREAD16(ICH7_REG_SPIS) & SPIS_SCIP) && --timeout) {
|
|
default_delay(10);
|
|
}
|
|
if (!timeout) {
|
|
msg_perr("Error: SCIP never cleared!\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Program offset in flash into SPIA while preserving reserved bits. */
|
|
temp32 = REGREAD32(ICH7_REG_SPIA) & ~0x00FFFFFF;
|
|
REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF) | temp32);
|
|
|
|
/* Program data into SPID0 to N */
|
|
if (write_cmd && (datalength != 0))
|
|
ich_fill_data(data, datalength, ICH7_REG_SPID0);
|
|
|
|
/* Assemble SPIS */
|
|
temp16 = REGREAD16(ICH7_REG_SPIS);
|
|
/* keep reserved bits */
|
|
temp16 &= SPIS_RESERVED_MASK;
|
|
/* clear error status registers */
|
|
temp16 |= (SPIS_CDS | SPIS_FCERR);
|
|
REGWRITE16(ICH7_REG_SPIS, temp16);
|
|
|
|
/* Assemble SPIC */
|
|
temp16 = 0;
|
|
|
|
if (datalength != 0) {
|
|
temp16 |= SPIC_DS;
|
|
temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8;
|
|
}
|
|
|
|
/* Select opcode */
|
|
opmenu = REGREAD32(ICH7_REG_OPMENU);
|
|
opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32;
|
|
|
|
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
|
|
if ((opmenu & 0xff) == op.opcode) {
|
|
break;
|
|
}
|
|
opmenu >>= 8;
|
|
}
|
|
if (opcode_index == 8) {
|
|
msg_pdbg("Opcode %x not found.\n", op.opcode);
|
|
return 1;
|
|
}
|
|
temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4;
|
|
|
|
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
|
|
/* Handle Atomic. Atomic commands include three steps:
|
|
- sending the preop (mainly EWSR or WREN)
|
|
- sending the main command
|
|
- waiting for the busy bit (WIP) to be cleared
|
|
This means the timeout must be sufficient for chip erase
|
|
of slow high-capacity chips.
|
|
*/
|
|
switch (op.atomic) {
|
|
case 2:
|
|
/* Select second preop. */
|
|
temp16 |= SPIC_SPOP;
|
|
/* Fall through. */
|
|
case 1:
|
|
/* Atomic command (preop+op) */
|
|
temp16 |= SPIC_ACS;
|
|
timeout = 100 * 1000 * 60; /* 60 seconds */
|
|
break;
|
|
}
|
|
|
|
/* Start */
|
|
temp16 |= SPIC_SCGO;
|
|
|
|
/* write it */
|
|
REGWRITE16(ICH7_REG_SPIC, temp16);
|
|
|
|
/* Wait for Cycle Done Status or Flash Cycle Error. */
|
|
while (((REGREAD16(ICH7_REG_SPIS) & (SPIS_CDS | SPIS_FCERR)) == 0) &&
|
|
--timeout) {
|
|
default_delay(10);
|
|
}
|
|
if (!timeout) {
|
|
msg_perr("timeout, ICH7_REG_SPIS=0x%04x\n", REGREAD16(ICH7_REG_SPIS));
|
|
return 1;
|
|
}
|
|
|
|
/* FIXME: make sure we do not needlessly cause transaction errors. */
|
|
temp16 = REGREAD16(ICH7_REG_SPIS);
|
|
if (temp16 & SPIS_FCERR) {
|
|
msg_perr("Transaction error!\n");
|
|
/* keep reserved bits */
|
|
temp16 &= SPIS_RESERVED_MASK;
|
|
REGWRITE16(ICH7_REG_SPIS, temp16 | SPIS_FCERR);
|
|
return 1;
|
|
}
|
|
|
|
if ((!write_cmd) && (datalength != 0))
|
|
ich_read_data(data, datalength, ICH7_REG_SPID0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ich9_run_opcode(OPCODE op, uint32_t offset,
|
|
uint8_t datalength, uint8_t * data)
|
|
{
|
|
bool write_cmd = false;
|
|
int timeout;
|
|
uint32_t temp32;
|
|
uint64_t opmenu;
|
|
int opcode_index;
|
|
|
|
/* Is it a write command? */
|
|
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|
|
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
|
|
write_cmd = true;
|
|
}
|
|
|
|
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
|
|
while ((REGREAD8(swseq_data.reg_ssfsc) & SSFS_SCIP) && --timeout) {
|
|
default_delay(10);
|
|
}
|
|
if (!timeout) {
|
|
msg_perr("Error: SCIP never cleared!\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Program offset in flash into FADDR while preserve the reserved bits
|
|
* and clearing the 25. address bit which is only usable in hwseq. */
|
|
temp32 = REGREAD32(ICH9_REG_FADDR) & ~0x01FFFFFF;
|
|
REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF) | temp32);
|
|
|
|
/* Program data into FDATA0 to N */
|
|
if (write_cmd && (datalength != 0))
|
|
ich_fill_data(data, datalength, ICH9_REG_FDATA0);
|
|
|
|
/* Assemble SSFS + SSFC */
|
|
temp32 = REGREAD32(swseq_data.reg_ssfsc);
|
|
/* Keep reserved bits only */
|
|
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
|
|
/* Clear cycle done and cycle error status registers */
|
|
temp32 |= (SSFS_FDONE | SSFS_FCERR);
|
|
REGWRITE32(swseq_data.reg_ssfsc, temp32);
|
|
|
|
/* Use 20 MHz */
|
|
temp32 |= SSFC_SCF_20MHZ;
|
|
|
|
/* Set data byte count (DBC) and data cycle bit (DS) */
|
|
if (datalength != 0) {
|
|
uint32_t datatemp;
|
|
temp32 |= SSFC_DS;
|
|
datatemp = ((((uint32_t)datalength - 1) << SSFC_DBC_OFF) & SSFC_DBC);
|
|
temp32 |= datatemp;
|
|
}
|
|
|
|
/* Select opcode */
|
|
opmenu = REGREAD32(swseq_data.reg_opmenu);
|
|
opmenu |= ((uint64_t)REGREAD32(swseq_data.reg_opmenu + 4)) << 32;
|
|
|
|
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
|
|
if ((opmenu & 0xff) == op.opcode) {
|
|
break;
|
|
}
|
|
opmenu >>= 8;
|
|
}
|
|
if (opcode_index == 8) {
|
|
msg_pdbg("Opcode %x not found.\n", op.opcode);
|
|
return 1;
|
|
}
|
|
temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4);
|
|
|
|
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
|
|
/* Handle Atomic. Atomic commands include three steps:
|
|
- sending the preop (mainly EWSR or WREN)
|
|
- sending the main command
|
|
- waiting for the busy bit (WIP) to be cleared
|
|
This means the timeout must be sufficient for chip erase
|
|
of slow high-capacity chips.
|
|
*/
|
|
switch (op.atomic) {
|
|
case 2:
|
|
/* Select second preop. */
|
|
temp32 |= SSFC_SPOP;
|
|
/* Fall through. */
|
|
case 1:
|
|
/* Atomic command (preop+op) */
|
|
temp32 |= SSFC_ACS;
|
|
timeout = 100 * 1000 * 60; /* 60 seconds */
|
|
break;
|
|
}
|
|
|
|
/* Start */
|
|
temp32 |= SSFC_SCGO;
|
|
|
|
/* write it */
|
|
REGWRITE32(swseq_data.reg_ssfsc, temp32);
|
|
|
|
/* Wait for Cycle Done Status or Flash Cycle Error. */
|
|
while (((REGREAD32(swseq_data.reg_ssfsc) & (SSFS_FDONE | SSFS_FCERR)) == 0) &&
|
|
--timeout) {
|
|
default_delay(10);
|
|
}
|
|
if (!timeout) {
|
|
msg_perr("timeout, REG_SSFS=0x%08"PRIx32"\n", REGREAD32(swseq_data.reg_ssfsc));
|
|
return 1;
|
|
}
|
|
|
|
/* FIXME make sure we do not needlessly cause transaction errors. */
|
|
temp32 = REGREAD32(swseq_data.reg_ssfsc);
|
|
if (temp32 & SSFS_FCERR) {
|
|
msg_perr("Transaction error!\n");
|
|
prettyprint_ich9_reg_ssfs(temp32);
|
|
prettyprint_ich9_reg_ssfc(temp32);
|
|
/* keep reserved bits */
|
|
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
|
|
/* Clear the transaction error. */
|
|
REGWRITE32(swseq_data.reg_ssfsc, temp32 | SSFS_FCERR);
|
|
return 1;
|
|
}
|
|
|
|
if ((!write_cmd) && (datalength != 0))
|
|
ich_read_data(data, datalength, ICH9_REG_FDATA0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int run_opcode(const struct flashctx *flash, OPCODE op, uint32_t offset,
|
|
uint8_t datalength, uint8_t * data)
|
|
{
|
|
/* max_data_read == max_data_write for all Intel/VIA SPI masters */
|
|
uint8_t maxlength = flash->mst->spi.max_data_read;
|
|
|
|
if (ich_generation == CHIPSET_ICH_UNKNOWN) {
|
|
msg_perr("%s: unsupported chipset\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
if (datalength > maxlength) {
|
|
msg_perr("%s: Internal command size error for "
|
|
"opcode 0x%02x, got datalength=%i, want <=%i\n",
|
|
__func__, op.opcode, datalength, maxlength);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
|
|
switch (ich_generation) {
|
|
case CHIPSET_ICH7:
|
|
case CHIPSET_TUNNEL_CREEK:
|
|
case CHIPSET_CENTERTON:
|
|
return ich7_run_opcode(op, offset, datalength, data, maxlength);
|
|
case CHIPSET_ICH8:
|
|
default: /* Future version might behave the same */
|
|
return ich9_run_opcode(op, offset, datalength, data);
|
|
}
|
|
}
|
|
|
|
static int ich_spi_send_command(const struct flashctx *flash, unsigned int writecnt,
|
|
unsigned int readcnt,
|
|
const unsigned char *writearr,
|
|
unsigned char *readarr)
|
|
{
|
|
int result;
|
|
int opcode_index = -1;
|
|
const unsigned char cmd = *writearr;
|
|
OPCODE *opcode;
|
|
uint32_t addr = 0;
|
|
uint8_t *data;
|
|
int count;
|
|
|
|
/* find cmd in opcodes-table */
|
|
opcode_index = find_opcode(curopcodes, cmd);
|
|
if (opcode_index == -1) {
|
|
if (!ichspi_lock)
|
|
opcode_index = reprogram_opcode_on_the_fly(cmd, writecnt, readcnt);
|
|
if (opcode_index == SPI_INVALID_LENGTH) {
|
|
msg_pdbg("OPCODE 0x%02x has unsupported length, will not execute.\n", cmd);
|
|
return SPI_INVALID_LENGTH;
|
|
} else if (opcode_index == -1) {
|
|
msg_pdbg("Invalid OPCODE 0x%02x, will not execute.\n", cmd);
|
|
return SPI_INVALID_OPCODE;
|
|
}
|
|
}
|
|
|
|
opcode = &(curopcodes->opcode[opcode_index]);
|
|
|
|
/* The following valid writecnt/readcnt combinations exist:
|
|
* writecnt = 4, readcnt >= 0
|
|
* writecnt = 1, readcnt >= 0
|
|
* writecnt >= 4, readcnt = 0
|
|
* writecnt >= 1, readcnt = 0
|
|
* writecnt >= 1 is guaranteed for all commands.
|
|
*/
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) &&
|
|
(writecnt != 4)) {
|
|
msg_perr("%s: Internal command size error for opcode "
|
|
"0x%02x, got writecnt=%i, want =4\n", __func__, cmd, writecnt);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) &&
|
|
(writecnt != 1)) {
|
|
msg_perr("%s: Internal command size error for opcode "
|
|
"0x%02x, got writecnt=%i, want =1\n", __func__, cmd, writecnt);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) &&
|
|
(writecnt < 4)) {
|
|
msg_perr("%s: Internal command size error for opcode "
|
|
"0x%02x, got writecnt=%i, want >=4\n", __func__, cmd, writecnt);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
if (((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
|
|
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) &&
|
|
(readcnt)) {
|
|
msg_perr("%s: Internal command size error for opcode "
|
|
"0x%02x, got readcnt=%i, want =0\n", __func__, cmd, readcnt);
|
|
return SPI_INVALID_LENGTH;
|
|
}
|
|
|
|
/* Translate read/write array/count.
|
|
* The maximum data length is identical for the maximum read length and
|
|
* for the maximum write length excluding opcode and address. Opcode and
|
|
* address are stored in separate registers, not in the data registers
|
|
* and are thus not counted towards data length. The only exception
|
|
* applies if the opcode definition (un)intentionally classifies said
|
|
* opcode incorrectly as non-address opcode or vice versa. */
|
|
if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) {
|
|
data = (uint8_t *) (writearr + 1);
|
|
count = writecnt - 1;
|
|
} else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
|
|
data = (uint8_t *) (writearr + 4);
|
|
count = writecnt - 4;
|
|
} else {
|
|
data = (uint8_t *) readarr;
|
|
count = readcnt;
|
|
}
|
|
|
|
/* if opcode-type requires an address */
|
|
if (cmd == JEDEC_REMS || cmd == JEDEC_RES) {
|
|
addr = ichspi_bbar;
|
|
} else if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS ||
|
|
opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
|
|
/* BBAR may cut part of the chip off at the lower end. */
|
|
const uint32_t valid_base = ichspi_bbar & ((flash->chip->total_size * 1024) - 1);
|
|
const uint32_t addr_offset = ichspi_bbar - valid_base;
|
|
/* Highest address we can program is (2^24 - 1). */
|
|
const uint32_t valid_end = (1 << 24) - addr_offset;
|
|
|
|
addr = writearr[1] << 16 | writearr[2] << 8 | writearr[3];
|
|
const uint32_t addr_end = addr + count;
|
|
|
|
if (addr < valid_base ||
|
|
addr_end < addr || /* integer overflow check */
|
|
addr_end > valid_end) {
|
|
msg_perr("%s: Addressed region 0x%06"PRIx32"-0x%06"PRIx32" not in allowed range 0x%06"PRIx32"-0x%06"PRIx32"\n",
|
|
__func__, addr, addr_end - 1, valid_base, valid_end - 1);
|
|
return SPI_INVALID_ADDRESS;
|
|
}
|
|
addr += addr_offset;
|
|
}
|
|
|
|
result = run_opcode(flash, *opcode, addr, count, data);
|
|
if (result) {
|
|
msg_pdbg("Running OPCODE 0x%02x failed ", opcode->opcode);
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
|
|
(opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS)) {
|
|
msg_pdbg("at address 0x%06"PRIx32" ", addr);
|
|
}
|
|
msg_pdbg("(payload length was %d).\n", count);
|
|
|
|
/* Print out the data array if it contains data to write.
|
|
* Errors are detected before the received data is read back into
|
|
* the array so it won't make sense to print it then. */
|
|
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
|
|
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) {
|
|
int i;
|
|
msg_pspew("The data was:\n");
|
|
for (i = 0; i < count; i++){
|
|
msg_pspew("%3d: 0x%02"PRIx8"\n", i, data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#define MAX_FD_REGIONS 16
|
|
struct fd_region {
|
|
const char* name;
|
|
enum ich_access_protection level;
|
|
uint32_t base;
|
|
uint32_t limit;
|
|
};
|
|
|
|
struct hwseq_data {
|
|
uint32_t size_comp0;
|
|
uint32_t size_comp1;
|
|
uint32_t addr_mask;
|
|
bool only_4k;
|
|
uint32_t hsfc_fcycle;
|
|
|
|
struct fd_region fd_regions[MAX_FD_REGIONS];
|
|
};
|
|
|
|
static struct hwseq_data *get_hwseq_data_from_context(const struct flashctx *flash)
|
|
{
|
|
return flash->mst->opaque.data;
|
|
}
|
|
|
|
/* Sets FLA in FADDR to (addr & hwseq_data->addr_mask) without touching other bits. */
|
|
static void ich_hwseq_set_addr(uint32_t addr, uint32_t mask)
|
|
{
|
|
uint32_t addr_old = REGREAD32(ICH9_REG_FADDR) & ~mask;
|
|
REGWRITE32(ICH9_REG_FADDR, (addr & mask) | addr_old);
|
|
}
|
|
|
|
/* Sets FADDR.FLA to 'addr' and returns the erase block size in bytes
|
|
* of the block containing this address. May return nonsense if the address is
|
|
* not valid. The erase block size for a specific address depends on the flash
|
|
* partition layout as specified by FPB and the partition properties as defined
|
|
* by UVSCC and LVSCC respectively. An alternative to implement this method
|
|
* would be by querying FPB and the respective VSCC register directly.
|
|
*/
|
|
static uint32_t ich_hwseq_get_erase_block_size(unsigned int addr, uint32_t addr_mask, bool only_4k)
|
|
{
|
|
uint8_t enc_berase;
|
|
static const uint32_t dec_berase[4] = {
|
|
256,
|
|
4 * 1024,
|
|
8 * 1024,
|
|
64 * 1024
|
|
};
|
|
|
|
if (only_4k) {
|
|
return 4 * 1024;
|
|
}
|
|
|
|
ich_hwseq_set_addr(addr, addr_mask);
|
|
enc_berase = (REGREAD16(ICH9_REG_HSFS) & HSFS_BERASE) >> HSFS_BERASE_OFF;
|
|
return dec_berase[enc_berase];
|
|
}
|
|
|
|
/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
|
|
Resets all error flags in HSFS.
|
|
Returns 0 if the cycle completes successfully without errors within
|
|
timeout us, 1 on errors. */
|
|
static int ich_hwseq_wait_for_cycle_complete(unsigned int len, enum ich_chipset ich_gen, uint32_t addr_mask)
|
|
{
|
|
/*
|
|
* The SPI bus may be busy due to performing operations from other masters, hence
|
|
* introduce the long timeout of 30s to cover the worst case scenarios as well.
|
|
*/
|
|
unsigned int timeout_us = 30 * 1000 * 1000;
|
|
uint16_t hsfs;
|
|
uint32_t addr;
|
|
|
|
timeout_us /= 8; /* scale timeout duration to counter */
|
|
while ((((hsfs = REGREAD16(ICH9_REG_HSFS)) &
|
|
(HSFS_FDONE | HSFS_FCERR)) == 0) &&
|
|
--timeout_us) {
|
|
default_delay(8);
|
|
}
|
|
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
|
|
if (!timeout_us) {
|
|
addr = REGREAD32(ICH9_REG_FADDR) & addr_mask;
|
|
msg_perr("Timeout error between offset 0x%08"PRIx32" and "
|
|
"0x%08"PRIx32" (= 0x%08"PRIx32" + %d)!\n",
|
|
addr, addr + len - 1, addr, len - 1);
|
|
prettyprint_ich9_reg_hsfs(hsfs, ich_gen);
|
|
prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC), ich_gen);
|
|
return 1;
|
|
}
|
|
|
|
if (hsfs & HSFS_FCERR) {
|
|
addr = REGREAD32(ICH9_REG_FADDR) & addr_mask;
|
|
msg_perr("Transaction error between offset 0x%08"PRIx32" and "
|
|
"0x%08"PRIx32" (= 0x%08"PRIx32" + %d)!\n",
|
|
addr, addr + len - 1, addr, len - 1);
|
|
prettyprint_ich9_reg_hsfs(hsfs, ich_gen);
|
|
prettyprint_ich9_reg_hsfc(REGREAD16(ICH9_REG_HSFC), ich_gen);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Fire up a transfer using the hardware sequencer. */
|
|
static void ich_start_hwseq_xfer(const struct flashctx *flash,
|
|
uint32_t hsfc_cycle, uint32_t flash_addr, size_t len,
|
|
uint32_t addr_mask)
|
|
{
|
|
/* make sure HSFC register is cleared before initiate any operation */
|
|
uint16_t hsfc = 0;
|
|
|
|
/* Sets flash_addr in FADDR */
|
|
ich_hwseq_set_addr(flash_addr, addr_mask);
|
|
|
|
/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
|
|
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
|
|
|
|
/* Set up transaction parameters. */
|
|
hsfc |= hsfc_cycle;
|
|
/*
|
|
* The number of bytes transferred is the value of `FDBC` plus 1, hence,
|
|
* subtracted 1 from the length field.
|
|
* As per Intel EDS, `0b` in the FDBC represents 1 byte while `0x3f`
|
|
* represents 64-bytes to be transferred.
|
|
*/
|
|
hsfc |= HSFC_FDBC_VAL(len - 1);
|
|
hsfc |= HSFC_FGO; /* start */
|
|
prettyprint_ich9_reg_hsfc(hsfc, ich_generation);
|
|
REGWRITE16(ICH9_REG_HSFC, hsfc);
|
|
}
|
|
|
|
static int ich_wait_for_hwseq_spi_cycle_complete(void)
|
|
{
|
|
if (REGREAD8(ICH9_REG_HSFS) & HSFS_SCIP) {
|
|
msg_perr("Error: SCIP bit is unexpectedly set.\n");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Execute SPI flash transfer */
|
|
static int ich_exec_sync_hwseq_xfer(const struct flashctx *flash, uint32_t hsfc_cycle, uint32_t flash_addr,
|
|
size_t len, enum ich_chipset ich_gen, uint32_t addr_mask)
|
|
{
|
|
if (ich_wait_for_hwseq_spi_cycle_complete()) {
|
|
msg_perr("SPI Transaction Timeout due to previous operation in process!\n");
|
|
return 1;
|
|
}
|
|
|
|
ich_start_hwseq_xfer(flash, hsfc_cycle, flash_addr, len, addr_mask);
|
|
return ich_hwseq_wait_for_cycle_complete(len, ich_gen, addr_mask);
|
|
}
|
|
|
|
static void ich_get_region(const struct flashctx *flash, unsigned int addr, struct flash_region *region)
|
|
{
|
|
struct ich_descriptors desc = { 0 };
|
|
const ssize_t nr = ich_number_of_regions(ich_generation, &desc.content);
|
|
const struct hwseq_data *hwseq_data = get_hwseq_data_from_context(flash);
|
|
const struct fd_region *fd_regions = hwseq_data->fd_regions;
|
|
|
|
/*
|
|
* Set default values for the region. If no flash descriptor containing
|
|
* addr is found, these values will be used instead.
|
|
*
|
|
* The region start and end are constrained so that they do not overlap
|
|
* any flash descriptor regions.
|
|
*/
|
|
const char *name = "";
|
|
region->read_prot = false;
|
|
region->write_prot = false;
|
|
region->start = 0;
|
|
region->end = flashrom_flash_getsize(flash) - 1;
|
|
|
|
for (ssize_t i = 0; i < nr; i++) {
|
|
uint32_t base = fd_regions[i].base;
|
|
uint32_t limit = fd_regions[i].limit;
|
|
enum ich_access_protection level = fd_regions[i].level;
|
|
|
|
if (addr < base) {
|
|
/*
|
|
* fd_regions[i] starts after addr, constrain
|
|
* region->end so that it does not overlap.
|
|
*/
|
|
region->end = min(region->end, base);
|
|
} else if (addr > limit) {
|
|
/*
|
|
* fd_regions[i] ends before addr, constrain
|
|
* region->start so that it does not overlap.
|
|
*/
|
|
region->start = max(region->start, limit + 1);
|
|
} else {
|
|
/* fd_regions[i] contains addr, copy to *region. */
|
|
name = fd_regions[i].name;
|
|
region->start = base;
|
|
region->end = limit;
|
|
region->read_prot = (level == LOCKED) || (level == READ_PROT);
|
|
region->write_prot = (level == LOCKED) || (level == WRITE_PROT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
region->name = strdup(name);
|
|
}
|
|
|
|
/* Given RDID info, return pointer to entry in flashchips[] */
|
|
static const struct flashchip *flash_id_to_entry(uint32_t mfg_id, uint32_t model_id)
|
|
{
|
|
const struct flashchip *chip;
|
|
|
|
for (chip = &flashchips[0]; chip->vendor; chip++) {
|
|
if ((chip->manufacture_id == mfg_id) &&
|
|
(chip->model_id == model_id) &&
|
|
(chip->probe == PROBE_SPI_RDID) &&
|
|
((chip->bustype & BUS_SPI) == BUS_SPI))
|
|
return chip;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int ich_hwseq_read_status(const struct flashctx *flash, enum flash_reg reg, uint8_t *value)
|
|
{
|
|
const int len = 1;
|
|
const struct hwseq_data *hwseq_data = get_hwseq_data_from_context(flash);
|
|
|
|
if (reg != STATUS1) {
|
|
msg_pdbg("%s: only supports STATUS1\n", __func__);
|
|
/*
|
|
* Return SPI_INVALID_OPCODE to be consistent with spi_read_register()
|
|
* and make error handling simpler even though this isn't a SPI master.
|
|
*/
|
|
return SPI_INVALID_OPCODE;
|
|
}
|
|
msg_pdbg("Reading Status register\n");
|
|
|
|
if (ich_exec_sync_hwseq_xfer(flash, HSFC_CYCLE_RD_STATUS, 1, len, ich_generation,
|
|
hwseq_data->addr_mask)) {
|
|
msg_perr("Reading Status register failed\n!!");
|
|
return -1;
|
|
}
|
|
ich_read_data(value, len, ICH9_REG_FDATA0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ich_hwseq_write_status(const struct flashctx *flash, enum flash_reg reg, uint8_t value)
|
|
{
|
|
const int len = 1;
|
|
const struct hwseq_data *hwseq_data = get_hwseq_data_from_context(flash);
|
|
|
|
if (reg != STATUS1) {
|
|
msg_pdbg("%s: only supports STATUS1\n", __func__);
|
|
/*
|
|
* Return SPI_INVALID_OPCODE to be consistent with spi_write_register()
|
|
* and make error handling simpler even though this isn't a SPI master.
|
|
*/
|
|
return SPI_INVALID_OPCODE;
|
|
}
|
|
msg_pdbg("Writing status register\n");
|
|
|
|
ich_fill_data(&value, len, ICH9_REG_FDATA0);
|
|
|
|
if (ich_exec_sync_hwseq_xfer(flash, HSFC_CYCLE_WR_STATUS, 1, len, ich_generation,
|
|
hwseq_data->addr_mask)) {
|
|
msg_perr("Writing Status register failed\n!!");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ich_hwseq_get_flash_id(struct flashctx *flash, enum ich_chipset ich_gen)
|
|
{
|
|
const struct hwseq_data *hwseq_data = get_hwseq_data_from_context(flash);
|
|
if (hwseq_data->size_comp1 != 0) {
|
|
msg_pinfo("Multiple flash components detected, skipping flash identification.\n");
|
|
return;
|
|
}
|
|
|
|
/* PCH100 or above is required for RDID, ICH9 does not support it. */
|
|
if (hwseq_data->hsfc_fcycle != PCH100_HSFC_FCYCLE) {
|
|
msg_pinfo("RDID cycle not supported, skipping flash identification.\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* RDID gives 3 byte output:
|
|
* Byte 0: Manufacturer ID
|
|
* Byte 1: Model ID (MSB)
|
|
* Byte 2: Model ID (LSB)
|
|
*/
|
|
const int len = 3;
|
|
uint8_t data[len];
|
|
|
|
if (ich_exec_sync_hwseq_xfer(flash, HSFC_CYCLE_RDID, 1, len, ich_gen,
|
|
hwseq_data->addr_mask)) {
|
|
msg_perr("Timed out waiting for RDID to complete.\n");
|
|
}
|
|
|
|
ich_read_data(data, len, ICH9_REG_FDATA0);
|
|
uint32_t mfg_id = data[0];
|
|
uint32_t model_id = (data[1] << 8) | data[2];
|
|
|
|
const struct flashchip *entry = flash_id_to_entry(mfg_id, model_id);
|
|
if (!entry) {
|
|
msg_pwarn("Unable to identify chip, mfg_id: 0x%02"PRIx32", "
|
|
"model_id: 0x%02"PRIx32"\n", mfg_id, model_id);
|
|
return;
|
|
}
|
|
|
|
msg_pdbg("Chip identified: %s\n", entry->name);
|
|
|
|
/* Update informational flash chip entries only */
|
|
flash->chip->vendor = entry->vendor;
|
|
flash->chip->name = entry->name;
|
|
flash->chip->manufacture_id = entry->manufacture_id;
|
|
flash->chip->model_id = entry->model_id;
|
|
/* total_size read from flash descriptor */
|
|
flash->chip->page_size = entry->page_size;
|
|
flash->chip->feature_bits = entry->feature_bits;
|
|
flash->chip->tested = entry->tested;
|
|
/* Support writeprotect */
|
|
flash->chip->reg_bits = entry->reg_bits;
|
|
flash->chip->decode_range = entry->decode_range;
|
|
}
|
|
|
|
static int ich_hwseq_probe(struct flashctx *flash)
|
|
{
|
|
uint32_t total_size, boundary;
|
|
uint32_t erase_size_low, size_low, erase_size_high, size_high;
|
|
struct block_eraser *eraser;
|
|
const struct hwseq_data *hwseq_data = get_hwseq_data_from_context(flash);
|
|
|
|
total_size = hwseq_data->size_comp0 + hwseq_data->size_comp1;
|
|
msg_cdbg("Hardware sequencing reports %d attached SPI flash chip",
|
|
(hwseq_data->size_comp1 != 0) ? 2 : 1);
|
|
if (hwseq_data->size_comp1 != 0)
|
|
msg_cdbg("s with a combined");
|
|
else
|
|
msg_cdbg(" with a");
|
|
msg_cdbg(" density of %"PRId32" kB.\n", total_size / 1024);
|
|
flash->chip->total_size = total_size / 1024;
|
|
|
|
eraser = &(flash->chip->block_erasers[0]);
|
|
if (!hwseq_data->only_4k)
|
|
boundary = (REGREAD32(ICH9_REG_FPB) & FPB_FPBA) << 12;
|
|
else
|
|
boundary = 0;
|
|
size_high = total_size - boundary;
|
|
erase_size_high = ich_hwseq_get_erase_block_size(boundary, hwseq_data->addr_mask, hwseq_data->only_4k);
|
|
|
|
if (boundary == 0) {
|
|
msg_cdbg2("There is only one partition containing the whole "
|
|
"address space (0x%06x - 0x%06"PRIx32").\n", 0, size_high-1);
|
|
eraser->eraseblocks[0].size = erase_size_high;
|
|
eraser->eraseblocks[0].count = size_high / erase_size_high;
|
|
msg_cdbg2("There are %"PRId32" erase blocks with %"PRId32" B each.\n",
|
|
size_high / erase_size_high, erase_size_high);
|
|
} else {
|
|
msg_cdbg2("The flash address space (0x%06x - 0x%06"PRIx32") is divided "
|
|
"at address 0x%06"PRIx32" in two partitions.\n",
|
|
0, total_size-1, boundary);
|
|
size_low = total_size - size_high;
|
|
erase_size_low = ich_hwseq_get_erase_block_size(0, hwseq_data->addr_mask, hwseq_data->only_4k);
|
|
|
|
eraser->eraseblocks[0].size = erase_size_low;
|
|
eraser->eraseblocks[0].count = size_low / erase_size_low;
|
|
msg_cdbg("The first partition ranges from 0x%06x to 0x%06"PRIx32".\n", 0, size_low-1);
|
|
msg_cdbg("In that range are %"PRId32" erase blocks with %"PRId32" B each.\n",
|
|
size_low / erase_size_low, erase_size_low);
|
|
|
|
eraser->eraseblocks[1].size = erase_size_high;
|
|
eraser->eraseblocks[1].count = size_high / erase_size_high;
|
|
msg_cdbg("The second partition ranges from 0x%06"PRIx32" to 0x%06"PRIx32".\n",
|
|
boundary, total_size-1);
|
|
msg_cdbg("In that range are %"PRId32" erase blocks with %"PRId32" B each.\n",
|
|
size_high / erase_size_high, erase_size_high);
|
|
}
|
|
|
|
/* May be overwritten by ich_hwseq_get_flash_id(). */
|
|
flash->chip->tested = TEST_OK_PREWB;
|
|
|
|
ich_hwseq_get_flash_id(flash, ich_generation);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int ich_hwseq_block_erase(struct flashctx *flash, unsigned int addr,
|
|
unsigned int len)
|
|
{
|
|
uint32_t erase_block;
|
|
const struct hwseq_data *hwseq_data = get_hwseq_data_from_context(flash);
|
|
|
|
erase_block = ich_hwseq_get_erase_block_size(addr, hwseq_data->addr_mask, hwseq_data->only_4k);
|
|
if (len != erase_block) {
|
|
msg_cerr("Erase block size for address 0x%06x is %"PRId32" B, "
|
|
"but requested erase block size is %d B. "
|
|
"Not erasing anything.\n", addr, erase_block, len);
|
|
return -1;
|
|
}
|
|
|
|
/* Although the hardware supports this (it would erase the whole block
|
|
* containing the address) we play safe here. */
|
|
if (addr % erase_block != 0) {
|
|
msg_cerr("Erase address 0x%06x is not aligned to the erase "
|
|
"block boundary (any multiple of %"PRId32"). "
|
|
"Not erasing anything.\n", addr, erase_block);
|
|
return -1;
|
|
}
|
|
|
|
if (addr + len > flash->chip->total_size * 1024) {
|
|
msg_perr("Request to erase some inaccessible memory address(es)"
|
|
" (addr=0x%x, len=%d). Not erasing anything.\n", addr, len);
|
|
return -1;
|
|
}
|
|
|
|
msg_pdbg("Erasing %d bytes starting at 0x%06x.\n", len, addr);
|
|
|
|
if (ich_exec_sync_hwseq_xfer(flash, HSFC_CYCLE_BLOCK_ERASE, addr, 1, ich_generation,
|
|
hwseq_data->addr_mask))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int ich_hwseq_read(struct flashctx *flash, uint8_t *buf,
|
|
unsigned int addr, unsigned int len)
|
|
{
|
|
uint8_t block_len;
|
|
const struct hwseq_data *hwseq_data = get_hwseq_data_from_context(flash);
|
|
|
|
if (addr + len > flash->chip->total_size * 1024) {
|
|
msg_perr("Request to read from an inaccessible memory address "
|
|
"(addr=0x%x, len=%d).\n", addr, len);
|
|
return -1;
|
|
}
|
|
|
|
msg_pdbg("Reading %d bytes starting at 0x%06x.\n", len, addr);
|
|
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
|
|
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
|
|
|
|
while (len > 0) {
|
|
/* Obey programmer limit... */
|
|
block_len = min(len, flash->mst->opaque.max_data_read);
|
|
/* as well as flash chip page borders as demanded in the Intel datasheets. */
|
|
block_len = min(block_len, 256 - (addr & 0xFF));
|
|
|
|
if (ich_exec_sync_hwseq_xfer(flash, HSFC_CYCLE_READ, addr, block_len, ich_generation,
|
|
hwseq_data->addr_mask))
|
|
return 1;
|
|
ich_read_data(buf, block_len, ICH9_REG_FDATA0);
|
|
addr += block_len;
|
|
buf += block_len;
|
|
len -= block_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ich_hwseq_write(struct flashctx *flash, const uint8_t *buf, unsigned int addr, unsigned int len)
|
|
{
|
|
uint8_t block_len;
|
|
const struct hwseq_data *hwseq_data = get_hwseq_data_from_context(flash);
|
|
|
|
if (addr + len > flash->chip->total_size * 1024) {
|
|
msg_perr("Request to write to an inaccessible memory address "
|
|
"(addr=0x%x, len=%d).\n", addr, len);
|
|
return -1;
|
|
}
|
|
|
|
msg_pdbg("Writing %d bytes starting at 0x%06x.\n", len, addr);
|
|
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
|
|
REGWRITE16(ICH9_REG_HSFS, REGREAD16(ICH9_REG_HSFS));
|
|
|
|
while (len > 0) {
|
|
/* Obey programmer limit... */
|
|
block_len = min(len, flash->mst->opaque.max_data_write);
|
|
/* as well as flash chip page borders as demanded in the Intel datasheets. */
|
|
block_len = min(block_len, 256 - (addr & 0xFF));
|
|
ich_fill_data(buf, block_len, ICH9_REG_FDATA0);
|
|
|
|
if (ich_exec_sync_hwseq_xfer(flash, HSFC_CYCLE_WRITE, addr, block_len, ich_generation,
|
|
hwseq_data->addr_mask))
|
|
return -1;
|
|
addr += block_len;
|
|
buf += block_len;
|
|
len -= block_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ich_hwseq_shutdown(void *data)
|
|
{
|
|
free(data);
|
|
return 0;
|
|
}
|
|
|
|
static int ich_spi_send_multicommand(const struct flashctx *flash,
|
|
struct spi_command *cmds)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
int oppos, preoppos;
|
|
for (; (cmds->writecnt || cmds->readcnt) && !ret; cmds++) {
|
|
if ((cmds + 1)->writecnt || (cmds + 1)->readcnt) {
|
|
/* Next command is valid. */
|
|
preoppos = find_preop(curopcodes, cmds->writearr[0]);
|
|
oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]);
|
|
if ((oppos == -1) && (preoppos != -1)) {
|
|
/* Current command is listed as preopcode in
|
|
* ICH struct OPCODES, but next command is not
|
|
* listed as opcode in that struct.
|
|
* Check for command sanity, then
|
|
* try to reprogram the ICH opcode list.
|
|
*/
|
|
if (find_preop(curopcodes,
|
|
(cmds + 1)->writearr[0]) != -1) {
|
|
msg_perr("%s: Two subsequent "
|
|
"preopcodes 0x%02x and 0x%02x, "
|
|
"ignoring the first.\n",
|
|
__func__, cmds->writearr[0],
|
|
(cmds + 1)->writearr[0]);
|
|
continue;
|
|
}
|
|
/* If the chipset is locked down, we'll fail
|
|
* during execution of the next command anyway.
|
|
* No need to bother with fixups.
|
|
*/
|
|
if (!ichspi_lock) {
|
|
oppos = reprogram_opcode_on_the_fly((cmds + 1)->writearr[0], (cmds + 1)->writecnt, (cmds + 1)->readcnt);
|
|
if (oppos == -1)
|
|
continue;
|
|
curopcodes->opcode[oppos].atomic = preoppos + 1;
|
|
continue;
|
|
}
|
|
}
|
|
if ((oppos != -1) && (preoppos != -1)) {
|
|
/* Current command is listed as preopcode in
|
|
* ICH struct OPCODES and next command is listed
|
|
* as opcode in that struct. Match them up.
|
|
*/
|
|
curopcodes->opcode[oppos].atomic = preoppos + 1;
|
|
continue;
|
|
}
|
|
/* If none of the above if-statements about oppos or
|
|
* preoppos matched, this is a normal opcode.
|
|
*/
|
|
}
|
|
ret = ich_spi_send_command(flash, cmds->writecnt, cmds->readcnt,
|
|
cmds->writearr, cmds->readarr);
|
|
/* Reset the type of all opcodes to non-atomic. */
|
|
for (i = 0; i < 8; i++)
|
|
curopcodes->opcode[i].atomic = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static bool ich_spi_probe_opcode(const struct flashctx *flash, uint8_t opcode)
|
|
{
|
|
int ret = find_opcode(curopcodes, opcode);
|
|
if ((ret == -1) && (lookup_spi_type(opcode) <= 3) && (!ichspi_lock))
|
|
/* opcode is in POSSIBLE_OPCODES, report supported.
|
|
* Relying on reprogramming on-the-fly
|
|
* when opcode is not in curopcodes, but is in POSSIBLE_OPCODES.
|
|
*
|
|
* on-the-fly does not work for locked chipsets, therefore checking ichspi_lock. */
|
|
return true;
|
|
return ret >= 0;
|
|
}
|
|
|
|
#define ICH_BMWAG(x) ((x >> 24) & 0xff)
|
|
#define ICH_BMRAG(x) ((x >> 16) & 0xff)
|
|
#define ICH_BRWA(x) ((x >> 8) & 0xff)
|
|
#define ICH_BRRA(x) ((x >> 0) & 0xff)
|
|
|
|
static const enum ich_access_protection access_perms_to_protection[] = {
|
|
LOCKED, WRITE_PROT, READ_PROT, NO_PROT
|
|
};
|
|
static const char *const access_names[] = {
|
|
"read-write", "write-only", "read-only", "locked"
|
|
};
|
|
|
|
static void ich_get_bios_region_access(uint16_t *region_read_access,
|
|
uint16_t *region_write_access)
|
|
{
|
|
uint32_t tmp;
|
|
*region_read_access = 0;
|
|
*region_write_access = 0;
|
|
|
|
if (ich_generation >= CHIPSET_METEOR_LAKE) {
|
|
/*
|
|
* Starting from Meteor Lake, we need to fetch the region
|
|
* read/write access permissions from the BIOS_BM registers
|
|
* because we need to support FREG9 or above.
|
|
*/
|
|
*region_read_access = mmio_readw(ich_spibar + ICH_REG_BIOS_BM_RAP);
|
|
*region_write_access = mmio_readw(ich_spibar + ICH_REG_BIOS_BM_WAP);
|
|
msg_pdbg("0x118: 0x%04"PRIx16" (BIOS_BM_RAP)\n", *region_read_access);
|
|
msg_pdbg("0x11a: 0x%04"PRIx16" (BIOS_BM_WAP)\n", *region_write_access);
|
|
} else {
|
|
/*
|
|
* FRAP - Flash Regions Access Permissions Register
|
|
* Bit Descriptions:
|
|
* 31:24 BIOS Master Write Access Grant (BMWAG)
|
|
* 23:16 BIOS Master Read Access Grant (BMRAG)
|
|
* 15:8 BIOS Region Write Access (BRWA)
|
|
* 7:0 BIOS Region Read Access (BRRA)
|
|
*/
|
|
tmp = mmio_readl(ich_spibar + ICH9_REG_FRAP);
|
|
msg_pdbg("0x50: 0x%08"PRIx32" (FRAP)\n", tmp);
|
|
msg_pdbg("BMWAG 0x%02"PRIx32", ", ICH_BMWAG(tmp));
|
|
msg_pdbg("BMRAG 0x%02"PRIx32", ", ICH_BMRAG(tmp));
|
|
msg_pdbg("BRWA 0x%02"PRIx32", ", ICH_BRWA(tmp));
|
|
msg_pdbg("BRRA 0x%02"PRIx32"\n", ICH_BRRA(tmp));
|
|
|
|
*region_read_access = (uint16_t)ICH_BRRA(tmp);
|
|
*region_write_access = (uint16_t)ICH_BRWA(tmp);
|
|
}
|
|
}
|
|
|
|
static unsigned int ich_get_defined_region_count(void) {
|
|
return (ich_generation >= CHIPSET_METEOR_LAKE) ? 16 : 8;
|
|
}
|
|
|
|
static enum ich_access_protection ich9_handle_region_access(struct fd_region *fd_regions,
|
|
uint16_t region_read_access,
|
|
uint16_t region_write_access,
|
|
unsigned int i)
|
|
{
|
|
static const char *const region_names[] = {
|
|
"Flash Descriptor", "BIOS", "Management Engine",
|
|
"Gigabit Ethernet", "Platform Data", "Device Expansion",
|
|
"BIOS2", "unknown", "EC/BMC", "Device Expansion 2",
|
|
"Innovation Engine", "10GbE0", "10GbE1", "unknown", "unknown", "PTT",
|
|
};
|
|
const char *const region_name = i < ARRAY_SIZE(region_names) ? region_names[i] : "unknown";
|
|
|
|
uint32_t base, limit;
|
|
unsigned int rwperms_idx;
|
|
enum ich_access_protection rwperms;
|
|
const int offset = i < 12
|
|
? ICH9_REG_FREG0 + i * 4
|
|
: APL_REG_FREG12 + (i - 12) * 4;
|
|
uint32_t freg = mmio_readl(ich_spibar + offset);
|
|
|
|
base = ICH_FREG_BASE(freg);
|
|
limit = ICH_FREG_LIMIT(freg);
|
|
if (base > limit || (freg == 0 && i > 0)) {
|
|
/* this FREG is disabled */
|
|
msg_pdbg2("0x%02X: 0x%08"PRIx32" FREG%u: %s region is unused.\n",
|
|
offset, freg, i, region_name);
|
|
return NO_PROT;
|
|
}
|
|
msg_pdbg("0x%02X: 0x%08"PRIx32" ", offset, freg);
|
|
|
|
if (i < ich_get_defined_region_count()) {
|
|
rwperms_idx = (((region_write_access >> i) & 1) << 1) |
|
|
(((region_read_access >> i) & 1) << 0);
|
|
rwperms = access_perms_to_protection[rwperms_idx];
|
|
} else {
|
|
/* Datasheets might not define all the access bits for regions. We
|
|
can't rely on the actual descriptor settings either as there
|
|
are several overrides for them (those by other masters are
|
|
not even readable by us, *shrug*). */
|
|
msg_pdbg("FREG%u: %s region (0x%08"PRIx32"-0x%08"PRIx32") has unknown permissions.\n",
|
|
i, region_name, base, limit);
|
|
return NO_PROT;
|
|
}
|
|
msg_pinfo("FREG%u: %s region (0x%08"PRIx32"-0x%08"PRIx32") is %s.\n", i,
|
|
region_name, base, limit, access_names[rwperms]);
|
|
|
|
/* Save region attributes for use by ich_get_region(). */
|
|
fd_regions[i].base = base;
|
|
fd_regions[i].limit = limit;
|
|
fd_regions[i].level = rwperms;
|
|
fd_regions[i].name = region_name;
|
|
|
|
return rwperms;
|
|
}
|
|
|
|
/* In contrast to FRAP and the master section of the descriptor the bits
|
|
* in the PR registers have an inverted meaning. The bits in FRAP
|
|
* indicate read and write access _grant_. Here they indicate read
|
|
* and write _protection_ respectively. If both bits are 0 the address
|
|
* bits are ignored.
|
|
*/
|
|
#define ICH_PR_PERMS(pr) (((~((pr) >> PR_RP_OFF) & 1) << 0) | \
|
|
((~((pr) >> PR_WP_OFF) & 1) << 1))
|
|
|
|
static enum ich_access_protection ich9_handle_pr(const size_t reg_pr0, unsigned int i)
|
|
{
|
|
uint8_t off = reg_pr0 + (i * 4);
|
|
uint32_t pr = mmio_readl(ich_spibar + off);
|
|
unsigned int rwperms_idx = ICH_PR_PERMS(pr);
|
|
enum ich_access_protection rwperms = access_perms_to_protection[rwperms_idx];
|
|
|
|
/* From 5 on we have GPR registers and start from 0 again. */
|
|
const char *const prefix = i >= 5 ? "G" : "";
|
|
if (i >= 5)
|
|
i -= 5;
|
|
|
|
if (rwperms == NO_PROT) {
|
|
msg_pdbg2("0x%02"PRIX8": 0x%08"PRIx32" (%sPR%u is unused)\n", off, pr, prefix, i);
|
|
return NO_PROT;
|
|
}
|
|
|
|
msg_pdbg("0x%02"PRIX8": 0x%08"PRIx32" ", off, pr);
|
|
msg_pwarn("%sPR%u: Warning: 0x%08"PRIx32"-0x%08"PRIx32" is %s.\n", prefix, i, ICH_FREG_BASE(pr),
|
|
ICH_FREG_LIMIT(pr), access_names[rwperms]);
|
|
|
|
return rwperms;
|
|
}
|
|
|
|
/* Set/Clear the read and write protection enable bits of PR register @i
|
|
* according to @read_prot and @write_prot. */
|
|
static void ich9_set_pr(const size_t reg_pr0, int i, int read_prot, int write_prot)
|
|
{
|
|
void *addr = ich_spibar + reg_pr0 + (i * 4);
|
|
uint32_t old = mmio_readl(addr);
|
|
uint32_t new;
|
|
|
|
msg_gspew("PR%u is 0x%08"PRIx32"", i, old);
|
|
new = old & ~((1 << PR_RP_OFF) | (1 << PR_WP_OFF));
|
|
if (read_prot)
|
|
new |= (1 << PR_RP_OFF);
|
|
if (write_prot)
|
|
new |= (1 << PR_WP_OFF);
|
|
if (old == new) {
|
|
msg_gspew(" already.\n");
|
|
return;
|
|
}
|
|
msg_gspew(", trying to set it to 0x%08"PRIx32" ", new);
|
|
rmmio_writel(new, addr);
|
|
msg_gspew("resulted in 0x%08"PRIx32".\n", mmio_readl(addr));
|
|
}
|
|
|
|
static const struct spi_master spi_master_ich = {
|
|
.max_data_read = 64,
|
|
.max_data_write = 64,
|
|
.command = ich_spi_send_command,
|
|
.multicommand = ich_spi_send_multicommand,
|
|
.map_flash_region = physmap,
|
|
.unmap_flash_region = physunmap,
|
|
.read = default_spi_read,
|
|
.write_256 = default_spi_write_256,
|
|
.probe_opcode = ich_spi_probe_opcode,
|
|
};
|
|
|
|
static const struct opaque_master opaque_master_ich_hwseq = {
|
|
.max_data_read = 64,
|
|
.max_data_write = 64,
|
|
.probe = ich_hwseq_probe,
|
|
.read = ich_hwseq_read,
|
|
.write = ich_hwseq_write,
|
|
.erase = ich_hwseq_block_erase,
|
|
.read_register = ich_hwseq_read_status,
|
|
.write_register = ich_hwseq_write_status,
|
|
.get_region = ich_get_region,
|
|
.shutdown = ich_hwseq_shutdown,
|
|
};
|
|
|
|
static int init_ich7_spi(void *spibar, enum ich_chipset ich_gen)
|
|
{
|
|
unsigned int i;
|
|
|
|
msg_pdbg("0x00: 0x%04"PRIx16" (SPIS)\n", mmio_readw(spibar + 0));
|
|
msg_pdbg("0x02: 0x%04"PRIx16" (SPIC)\n", mmio_readw(spibar + 2));
|
|
msg_pdbg("0x04: 0x%08"PRIx32" (SPIA)\n", mmio_readl(spibar + 4));
|
|
|
|
ichspi_bbar = mmio_readl(spibar + 0x50);
|
|
|
|
msg_pdbg("0x50: 0x%08"PRIx32" (BBAR)\n", ichspi_bbar);
|
|
msg_pdbg("0x54: 0x%04"PRIx16" (PREOP)\n", mmio_readw(spibar + 0x54));
|
|
msg_pdbg("0x56: 0x%04"PRIx16" (OPTYPE)\n", mmio_readw(spibar + 0x56));
|
|
msg_pdbg("0x58: 0x%08"PRIx32" (OPMENU)\n", mmio_readl(spibar + 0x58));
|
|
msg_pdbg("0x5c: 0x%08"PRIx32" (OPMENU+4)\n", mmio_readl(spibar + 0x5c));
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
int offs;
|
|
offs = 0x60 + (i * 4);
|
|
msg_pdbg("0x%02x: 0x%08"PRIx32" (PBR%u)\n", offs, mmio_readl(spibar + offs), i);
|
|
}
|
|
if (mmio_readw(spibar) & (1 << 15)) {
|
|
msg_pwarn("WARNING: SPI Configuration Lockdown activated.\n");
|
|
ichspi_lock = true;
|
|
}
|
|
ich_init_opcodes(ich_gen);
|
|
ich_set_bbar(0, ich_gen);
|
|
register_spi_master(&spi_master_ich, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum ich_spi_mode {
|
|
ich_auto,
|
|
ich_hwseq,
|
|
ich_swseq
|
|
};
|
|
|
|
static int get_ich_spi_mode_param(const struct programmer_cfg *cfg, enum ich_spi_mode *ich_spi_mode)
|
|
{
|
|
char *const arg = extract_programmer_param_str(cfg, "ich_spi_mode");
|
|
if (!arg) {
|
|
return 0;
|
|
} else if (!strcmp(arg, "hwseq")) {
|
|
*ich_spi_mode = ich_hwseq;
|
|
msg_pspew("user selected hwseq\n");
|
|
} else if (!strcmp(arg, "swseq")) {
|
|
*ich_spi_mode = ich_swseq;
|
|
msg_pspew("user selected swseq\n");
|
|
} else if (!strcmp(arg, "auto")) {
|
|
msg_pspew("user selected auto\n");
|
|
*ich_spi_mode = ich_auto;
|
|
} else if (!strlen(arg)) {
|
|
msg_perr("Missing argument for ich_spi_mode.\n");
|
|
free(arg);
|
|
return ERROR_FLASHROM_FATAL;
|
|
} else {
|
|
msg_perr("Unknown argument for ich_spi_mode: %s\n", arg);
|
|
free(arg);
|
|
return ERROR_FLASHROM_FATAL;
|
|
}
|
|
free(arg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void init_chipset_properties(struct swseq_data *swseq, struct hwseq_data *hwseq,
|
|
size_t *num_freg, size_t *num_pr, size_t *reg_pr0,
|
|
enum ich_chipset ich_gen)
|
|
{
|
|
/* Moving registers / bits */
|
|
switch (ich_gen) {
|
|
case CHIPSET_100_SERIES_SUNRISE_POINT:
|
|
case CHIPSET_C620_SERIES_LEWISBURG:
|
|
case CHIPSET_C740_SERIES_EMMITSBURG:
|
|
case CHIPSET_300_SERIES_CANNON_POINT:
|
|
case CHIPSET_400_SERIES_COMET_POINT:
|
|
case CHIPSET_500_SERIES_TIGER_POINT:
|
|
case CHIPSET_600_SERIES_ALDER_POINT:
|
|
case CHIPSET_700_SERIES_RAPTOR_POINT:
|
|
case CHIPSET_APOLLO_LAKE:
|
|
case CHIPSET_GEMINI_LAKE:
|
|
case CHIPSET_JASPER_LAKE:
|
|
case CHIPSET_ELKHART_LAKE:
|
|
case CHIPSET_METEOR_LAKE:
|
|
case CHIPSET_PANTHER_LAKE:
|
|
*num_pr = 6; /* Includes GPR0 */
|
|
*reg_pr0 = PCH100_REG_FPR0;
|
|
swseq->reg_ssfsc = PCH100_REG_SSFSC;
|
|
swseq->reg_preop = PCH100_REG_PREOP;
|
|
swseq->reg_optype = PCH100_REG_OPTYPE;
|
|
swseq->reg_opmenu = PCH100_REG_OPMENU;
|
|
hwseq->addr_mask = PCH100_FADDR_FLA;
|
|
hwseq->only_4k = true;
|
|
hwseq->hsfc_fcycle = PCH100_HSFC_FCYCLE;
|
|
break;
|
|
default:
|
|
*num_pr = 5;
|
|
*reg_pr0 = ICH9_REG_PR0;
|
|
swseq->reg_ssfsc = ICH9_REG_SSFS;
|
|
swseq->reg_preop = ICH9_REG_PREOP;
|
|
swseq->reg_optype = ICH9_REG_OPTYPE;
|
|
swseq->reg_opmenu = ICH9_REG_OPMENU;
|
|
hwseq->addr_mask = ICH9_FADDR_FLA;
|
|
hwseq->only_4k = false;
|
|
hwseq->hsfc_fcycle = ICH9_HSFC_FCYCLE;
|
|
break;
|
|
}
|
|
|
|
switch (ich_gen) {
|
|
case CHIPSET_100_SERIES_SUNRISE_POINT:
|
|
*num_freg = 10;
|
|
break;
|
|
case CHIPSET_C620_SERIES_LEWISBURG:
|
|
case CHIPSET_C740_SERIES_EMMITSBURG:
|
|
*num_freg = 12; /* 12 MMIO regs, but 16 regions in FD spec */
|
|
break;
|
|
case CHIPSET_300_SERIES_CANNON_POINT:
|
|
case CHIPSET_400_SERIES_COMET_POINT:
|
|
case CHIPSET_500_SERIES_TIGER_POINT:
|
|
case CHIPSET_600_SERIES_ALDER_POINT:
|
|
case CHIPSET_700_SERIES_RAPTOR_POINT:
|
|
case CHIPSET_APOLLO_LAKE:
|
|
case CHIPSET_GEMINI_LAKE:
|
|
case CHIPSET_JASPER_LAKE:
|
|
case CHIPSET_ELKHART_LAKE:
|
|
case CHIPSET_METEOR_LAKE:
|
|
case CHIPSET_PANTHER_LAKE:
|
|
*num_freg = 16;
|
|
break;
|
|
default:
|
|
*num_freg = 5;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int init_ich_default(const struct programmer_cfg *cfg, void *spibar, enum ich_chipset ich_gen)
|
|
{
|
|
unsigned int i;
|
|
uint16_t tmp2;
|
|
uint32_t tmp;
|
|
int ich_spi_rw_restricted = 0;
|
|
bool desc_valid = false;
|
|
struct ich_descriptors desc = { 0 };
|
|
enum ich_spi_mode ich_spi_mode = ich_auto;
|
|
size_t num_freg, num_pr, reg_pr0;
|
|
struct hwseq_data hwseq_data = { 0 };
|
|
init_chipset_properties(&swseq_data, &hwseq_data, &num_freg, &num_pr, ®_pr0, ich_gen);
|
|
|
|
int ret = get_ich_spi_mode_param(cfg, &ich_spi_mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
tmp2 = mmio_readw(spibar + ICH9_REG_HSFS);
|
|
msg_pdbg("0x04: 0x%04x (HSFS)\n", tmp2);
|
|
prettyprint_ich9_reg_hsfs(tmp2, ich_gen);
|
|
if (tmp2 & HSFS_FLOCKDN) {
|
|
msg_pinfo("SPI Configuration is locked down.\n");
|
|
ichspi_lock = true;
|
|
}
|
|
if (tmp2 & HSFS_FDV)
|
|
desc_valid = true;
|
|
if (!(tmp2 & HSFS_FDOPSS) && desc_valid)
|
|
msg_pinfo("The Flash Descriptor Override Strap-Pin is set. Restrictions implied by\n"
|
|
"the Master Section of the flash descriptor are NOT in effect. Please note\n"
|
|
"that Protected Range (PR) restrictions still apply.\n");
|
|
ich_init_opcodes(ich_gen);
|
|
|
|
if (desc_valid) {
|
|
tmp2 = mmio_readw(spibar + ICH9_REG_HSFC);
|
|
msg_pdbg("0x06: 0x%04"PRIx16" (HSFC)\n", tmp2);
|
|
prettyprint_ich9_reg_hsfc(tmp2, ich_gen);
|
|
}
|
|
|
|
tmp = mmio_readl(spibar + ICH9_REG_FADDR);
|
|
msg_pdbg2("0x08: 0x%08"PRIx32" (FADDR)\n", tmp);
|
|
|
|
switch (ich_gen) {
|
|
case CHIPSET_100_SERIES_SUNRISE_POINT:
|
|
case CHIPSET_C620_SERIES_LEWISBURG:
|
|
case CHIPSET_C740_SERIES_EMMITSBURG:
|
|
case CHIPSET_300_SERIES_CANNON_POINT:
|
|
case CHIPSET_400_SERIES_COMET_POINT:
|
|
case CHIPSET_500_SERIES_TIGER_POINT:
|
|
case CHIPSET_600_SERIES_ALDER_POINT:
|
|
case CHIPSET_700_SERIES_RAPTOR_POINT:
|
|
case CHIPSET_APOLLO_LAKE:
|
|
case CHIPSET_GEMINI_LAKE:
|
|
case CHIPSET_JASPER_LAKE:
|
|
case CHIPSET_ELKHART_LAKE:
|
|
case CHIPSET_METEOR_LAKE:
|
|
case CHIPSET_PANTHER_LAKE:
|
|
tmp = mmio_readl(spibar + PCH100_REG_DLOCK);
|
|
msg_pdbg("0x0c: 0x%08"PRIx32" (DLOCK)\n", tmp);
|
|
prettyprint_pch100_reg_dlock(tmp);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (desc_valid) {
|
|
/* Get the region access data from FRAP/BIOS_BM */
|
|
uint16_t region_read_access, region_write_access;
|
|
ich_get_bios_region_access(®ion_read_access, ®ion_write_access);
|
|
|
|
/* Handle FREGx and region access registers */
|
|
for (i = 0; i < num_freg; i++)
|
|
ich_spi_rw_restricted |= ich9_handle_region_access(hwseq_data.fd_regions,
|
|
region_read_access,
|
|
region_write_access, i);
|
|
if (ich_spi_rw_restricted)
|
|
msg_pinfo("Not all flash regions are freely accessible by flashrom. This is "
|
|
"most likely\ndue to an active ME. Please see "
|
|
"https://flashrom.org/ME for details.\n");
|
|
}
|
|
|
|
/* Handle PR registers */
|
|
for (i = 0; i < num_pr; i++) {
|
|
/* if not locked down try to disable PR locks first */
|
|
if (!ichspi_lock)
|
|
ich9_set_pr(reg_pr0, i, 0, 0);
|
|
ich_spi_rw_restricted |= ich9_handle_pr(reg_pr0, i);
|
|
}
|
|
|
|
switch (ich_spi_rw_restricted) {
|
|
case WRITE_PROT:
|
|
msg_pwarn("At least some flash regions are write protected. For write operations,\n"
|
|
"you should use a flash layout and include only writable regions. See\n"
|
|
"manpage for more details.\n");
|
|
break;
|
|
case READ_PROT:
|
|
case LOCKED:
|
|
msg_pwarn("At least some flash regions are read protected. You have to use a flash\n"
|
|
"layout and include only accessible regions. For write operations, you'll\n"
|
|
"additionally need the --noverify-all switch. See manpage for more details.\n");
|
|
break;
|
|
}
|
|
|
|
tmp = mmio_readl(spibar + swseq_data.reg_ssfsc);
|
|
msg_pdbg("0x%zx: 0x%02"PRIx32" (SSFS)\n", swseq_data.reg_ssfsc, tmp & 0xff);
|
|
prettyprint_ich9_reg_ssfs(tmp);
|
|
if (tmp & SSFS_FCERR) {
|
|
msg_pdbg("Clearing SSFS.FCERR\n");
|
|
mmio_writeb(SSFS_FCERR, spibar + swseq_data.reg_ssfsc);
|
|
}
|
|
msg_pdbg("0x%zx: 0x%06"PRIx32" (SSFC)\n", swseq_data.reg_ssfsc + 1, tmp >> 8);
|
|
prettyprint_ich9_reg_ssfc(tmp);
|
|
|
|
msg_pdbg("0x%zx: 0x%04"PRIx16" (PREOP)\n",
|
|
swseq_data.reg_preop, mmio_readw(spibar + swseq_data.reg_preop));
|
|
msg_pdbg("0x%zx: 0x%04"PRIx16" (OPTYPE)\n",
|
|
swseq_data.reg_optype, mmio_readw(spibar + swseq_data.reg_optype));
|
|
msg_pdbg("0x%zx: 0x%08"PRIx32" (OPMENU)\n",
|
|
swseq_data.reg_opmenu, mmio_readl(spibar + swseq_data.reg_opmenu));
|
|
msg_pdbg("0x%zx: 0x%08"PRIx32" (OPMENU+4)\n",
|
|
swseq_data.reg_opmenu + 4, mmio_readl(spibar + swseq_data.reg_opmenu + 4));
|
|
|
|
if (desc_valid) {
|
|
switch (ich_gen) {
|
|
case CHIPSET_ICH8:
|
|
case CHIPSET_100_SERIES_SUNRISE_POINT:
|
|
case CHIPSET_C620_SERIES_LEWISBURG:
|
|
case CHIPSET_C740_SERIES_EMMITSBURG:
|
|
case CHIPSET_300_SERIES_CANNON_POINT:
|
|
case CHIPSET_400_SERIES_COMET_POINT:
|
|
case CHIPSET_500_SERIES_TIGER_POINT:
|
|
case CHIPSET_600_SERIES_ALDER_POINT:
|
|
case CHIPSET_700_SERIES_RAPTOR_POINT:
|
|
case CHIPSET_APOLLO_LAKE:
|
|
case CHIPSET_GEMINI_LAKE:
|
|
case CHIPSET_JASPER_LAKE:
|
|
case CHIPSET_BAYTRAIL:
|
|
case CHIPSET_ELKHART_LAKE:
|
|
case CHIPSET_METEOR_LAKE:
|
|
case CHIPSET_PANTHER_LAKE:
|
|
break;
|
|
default:
|
|
ichspi_bbar = mmio_readl(spibar + ICH9_REG_BBAR);
|
|
msg_pdbg("0x%x: 0x%08"PRIx32" (BBAR)\n", ICH9_REG_BBAR, ichspi_bbar);
|
|
ich_set_bbar(0, ich_gen);
|
|
break;
|
|
}
|
|
|
|
if (ich_gen == CHIPSET_ICH8) {
|
|
tmp = mmio_readl(spibar + ICH8_REG_VSCC);
|
|
msg_pdbg("0x%x: 0x%08"PRIx32" (VSCC)\n", ICH8_REG_VSCC, tmp);
|
|
msg_pdbg("VSCC: ");
|
|
prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG, true);
|
|
} else {
|
|
tmp = mmio_readl(spibar + ICH9_REG_LVSCC);
|
|
msg_pdbg("0x%x: 0x%08"PRIx32" (LVSCC)\n", ICH9_REG_LVSCC, tmp);
|
|
msg_pdbg("LVSCC: ");
|
|
prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG, true);
|
|
|
|
tmp = mmio_readl(spibar + ICH9_REG_UVSCC);
|
|
msg_pdbg("0x%x: 0x%08"PRIx32" (UVSCC)\n", ICH9_REG_UVSCC, tmp);
|
|
msg_pdbg("UVSCC: ");
|
|
prettyprint_ich_reg_vscc(tmp, FLASHROM_MSG_DEBUG, false);
|
|
}
|
|
|
|
switch (ich_gen) {
|
|
case CHIPSET_ICH8:
|
|
case CHIPSET_100_SERIES_SUNRISE_POINT:
|
|
case CHIPSET_C620_SERIES_LEWISBURG:
|
|
case CHIPSET_C740_SERIES_EMMITSBURG:
|
|
case CHIPSET_300_SERIES_CANNON_POINT:
|
|
case CHIPSET_400_SERIES_COMET_POINT:
|
|
case CHIPSET_500_SERIES_TIGER_POINT:
|
|
case CHIPSET_600_SERIES_ALDER_POINT:
|
|
case CHIPSET_700_SERIES_RAPTOR_POINT:
|
|
case CHIPSET_APOLLO_LAKE:
|
|
case CHIPSET_GEMINI_LAKE:
|
|
case CHIPSET_JASPER_LAKE:
|
|
case CHIPSET_ELKHART_LAKE:
|
|
case CHIPSET_METEOR_LAKE:
|
|
case CHIPSET_PANTHER_LAKE:
|
|
break;
|
|
default:
|
|
tmp = mmio_readl(spibar + ICH9_REG_FPB);
|
|
msg_pdbg("0x%x: 0x%08"PRIx32" (FPB)\n", ICH9_REG_FPB, tmp);
|
|
break;
|
|
}
|
|
|
|
if (read_ich_descriptors_via_fdo(ich_gen, spibar, &desc) == ICH_RET_OK)
|
|
prettyprint_ich_descriptors(ich_gen, &desc);
|
|
|
|
/* If the descriptor is valid and indicates multiple
|
|
* flash devices we need to use hwseq to be able to
|
|
* access the second flash device.
|
|
*/
|
|
if (ich_spi_mode == ich_auto && desc.content.NC != 0) {
|
|
msg_pinfo("Enabling hardware sequencing due to multiple flash chips detected.\n");
|
|
ich_spi_mode = ich_hwseq;
|
|
}
|
|
}
|
|
|
|
if (ich_spi_mode == ich_auto && ichspi_lock &&
|
|
ich_missing_opcodes()) {
|
|
msg_pinfo("Enabling hardware sequencing because "
|
|
"some important opcode is locked.\n");
|
|
ich_spi_mode = ich_hwseq;
|
|
}
|
|
|
|
if (ich_spi_mode == ich_auto &&
|
|
(ich_gen == CHIPSET_100_SERIES_SUNRISE_POINT ||
|
|
ich_gen == CHIPSET_300_SERIES_CANNON_POINT ||
|
|
ich_gen == CHIPSET_400_SERIES_COMET_POINT ||
|
|
ich_gen == CHIPSET_500_SERIES_TIGER_POINT ||
|
|
ich_gen == CHIPSET_600_SERIES_ALDER_POINT ||
|
|
ich_gen == CHIPSET_700_SERIES_RAPTOR_POINT ||
|
|
ich_gen == CHIPSET_C740_SERIES_EMMITSBURG)) {
|
|
msg_pdbg("Enabling hardware sequencing by default for 100+ series PCH.\n");
|
|
ich_spi_mode = ich_hwseq;
|
|
}
|
|
|
|
if (ich_spi_mode == ich_auto &&
|
|
(ich_gen == CHIPSET_APOLLO_LAKE ||
|
|
ich_gen == CHIPSET_GEMINI_LAKE ||
|
|
ich_gen == CHIPSET_JASPER_LAKE ||
|
|
ich_gen == CHIPSET_ELKHART_LAKE ||
|
|
ich_gen == CHIPSET_METEOR_LAKE ||
|
|
ich_gen == CHIPSET_PANTHER_LAKE)) {
|
|
msg_pdbg("Enabling hardware sequencing by default for Apollo/Gemini/Jasper/Elkhart/Meteor/Panther Lake.\n");
|
|
ich_spi_mode = ich_hwseq;
|
|
}
|
|
|
|
if (ich_spi_mode == ich_hwseq) {
|
|
if (!desc_valid) {
|
|
msg_perr("Hardware sequencing was requested "
|
|
"but the flash descriptor is not valid. Aborting.\n");
|
|
return ERROR_FLASHROM_FATAL;
|
|
}
|
|
|
|
int tmpi = getFCBA_component_density(ich_gen, &desc, 0);
|
|
if (tmpi < 0) {
|
|
msg_perr("Could not determine density of flash component %d.\n", 0);
|
|
return ERROR_FLASHROM_FATAL;
|
|
}
|
|
hwseq_data.size_comp0 = tmpi;
|
|
|
|
tmpi = getFCBA_component_density(ich_gen, &desc, 1);
|
|
if (tmpi < 0) {
|
|
msg_perr("Could not determine density of flash component %d.\n", 1);
|
|
return ERROR_FLASHROM_FATAL;
|
|
}
|
|
hwseq_data.size_comp1 = tmpi;
|
|
|
|
struct hwseq_data *opaque_hwseq_data = calloc(1, sizeof(struct hwseq_data));
|
|
if (!opaque_hwseq_data)
|
|
return ERROR_FLASHROM_FATAL;
|
|
memcpy(opaque_hwseq_data, &hwseq_data, sizeof(*opaque_hwseq_data));
|
|
register_opaque_master(&opaque_master_ich_hwseq, opaque_hwseq_data);
|
|
} else {
|
|
register_spi_master(&spi_master_ich, NULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ich_init_spi(const struct programmer_cfg *cfg, void *spibar, enum ich_chipset ich_gen)
|
|
{
|
|
ich_generation = ich_gen;
|
|
ich_spibar = spibar;
|
|
|
|
switch (ich_gen) {
|
|
case CHIPSET_ICH7:
|
|
case CHIPSET_TUNNEL_CREEK:
|
|
case CHIPSET_CENTERTON:
|
|
return init_ich7_spi(spibar, ich_gen);
|
|
case CHIPSET_ICH8:
|
|
default: /* Future version might behave the same */
|
|
return init_ich_default(cfg, spibar, ich_gen);
|
|
}
|
|
}
|
|
|
|
static const struct spi_master spi_master_via = {
|
|
.max_data_read = 16,
|
|
.max_data_write = 16,
|
|
.command = ich_spi_send_command,
|
|
.multicommand = ich_spi_send_multicommand,
|
|
.map_flash_region = physmap,
|
|
.unmap_flash_region = physunmap,
|
|
.read = default_spi_read,
|
|
.write_256 = default_spi_write_256,
|
|
.probe_opcode = ich_spi_probe_opcode,
|
|
};
|
|
|
|
int via_init_spi(uint32_t mmio_base)
|
|
{
|
|
int i;
|
|
|
|
ich_spibar = rphysmap("VIA SPI MMIO registers", mmio_base, 0x70);
|
|
if (ich_spibar == ERROR_PTR)
|
|
return ERROR_FLASHROM_FATAL;
|
|
/* Do we really need no write enable? Like the LPC one at D17F0 0x40 */
|
|
|
|
/* Not sure if it speaks all these bus protocols. */
|
|
internal_buses_supported &= BUS_LPC | BUS_FWH;
|
|
ich_generation = CHIPSET_ICH7;
|
|
register_spi_master(&spi_master_via, NULL);
|
|
|
|
msg_pdbg("0x00: 0x%04"PRIx16" (SPIS)\n", mmio_readw(ich_spibar + 0));
|
|
msg_pdbg("0x02: 0x%04"PRIx16" (SPIC)\n", mmio_readw(ich_spibar + 2));
|
|
msg_pdbg("0x04: 0x%08"PRIx32" (SPIA)\n", mmio_readl(ich_spibar + 4));
|
|
for (i = 0; i < 2; i++) {
|
|
int offs;
|
|
offs = 8 + (i * 8);
|
|
msg_pdbg("0x%02x: 0x%08"PRIx32" (SPID%d)\n", offs, mmio_readl(ich_spibar + offs), i);
|
|
msg_pdbg("0x%02x: 0x%08"PRIx32" (SPID%d+4)\n", offs + 4,
|
|
mmio_readl(ich_spibar + offs + 4), i);
|
|
}
|
|
ichspi_bbar = mmio_readl(ich_spibar + 0x50);
|
|
|
|
msg_pdbg("0x50: 0x%08"PRIx32" (BBAR)\n", ichspi_bbar);
|
|
msg_pdbg("0x54: 0x%04"PRIx16" (PREOP)\n", mmio_readw(ich_spibar + 0x54));
|
|
msg_pdbg("0x56: 0x%04"PRIx16" (OPTYPE)\n", mmio_readw(ich_spibar + 0x56));
|
|
msg_pdbg("0x58: 0x%08"PRIx32" (OPMENU)\n", mmio_readl(ich_spibar + 0x58));
|
|
msg_pdbg("0x5c: 0x%08"PRIx32" (OPMENU+4)\n", mmio_readl(ich_spibar + 0x5c));
|
|
for (i = 0; i < 3; i++) {
|
|
int offs;
|
|
offs = 0x60 + (i * 4);
|
|
msg_pdbg("0x%02x: 0x%08"PRIx32" (PBR%d)\n", offs, mmio_readl(ich_spibar + offs), i);
|
|
}
|
|
msg_pdbg("0x6c: 0x%04x (CLOCK/DEBUG)\n", mmio_readw(ich_spibar + 0x6c));
|
|
if (mmio_readw(ich_spibar) & (1 << 15)) {
|
|
msg_pwarn("Warning: SPI Configuration Lockdown activated.\n");
|
|
ichspi_lock = true;
|
|
}
|
|
|
|
ich_set_bbar(0, ich_generation);
|
|
ich_init_opcodes(ich_generation);
|
|
|
|
return 0;
|
|
}
|