1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-26 22:52:34 +02:00
flashrom/include/flash.h
Antonio Vázquez Blanco b792b44e14 Extract cli_output declarations to a separate header.
This is a simple refactor that aims to simplify maintenance and to
clarify file dependency inside the project.
Currently, many declarations reside in flash.h making it difficult to
really understand file dependency.

Change-Id: I4209d5ed205ca14c39e83aa923e103b7282a7059
Signed-off-by: Antonio Vázquez Blanco <antoniovazquezblanco@gmail.com>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/85134
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Anastasia Klimchuk <aklm@chromium.org>
2024-12-06 06:30:09 +00:00

775 lines
27 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2000 Ronald G. Minnich <rminnich@gmail.com>
* Copyright (C) 2005-2009 coresystems GmbH
* Copyright (C) 2006-2009 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __FLASH_H__
#define __FLASH_H__ 1
#include <inttypes.h>
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <stdarg.h>
#include <stdbool.h>
#if IS_WINDOWS
#include <windows.h>
#undef min
#undef max
#endif
#include "libflashrom.h"
#include "layout.h"
#include "writeprotect.h"
#define KiB (1024)
#define MiB (1024 * KiB)
#define BIT(x) (1<<(x))
/* Assumes `n` and `a` are at most 64-bit wide (to avoid typeof() operator). */
#define ALIGN_DOWN(n, a) ((n) & ~((uint64_t)(a) - 1))
#define ERROR_PTR ((void*)-1)
/* Error codes */
#define ERROR_OOM -100
#define TIMEOUT_ERROR -101
/* TODO: check using code for correct usage of types */
typedef uintptr_t chipaddr;
#define PRIxPTR_WIDTH ((int)(sizeof(uintptr_t)*2))
int register_shutdown(int (*function) (void *data), void *data);
struct registered_master;
void *master_map_flash_region(const struct registered_master *mast,
const char *descr, uintptr_t phys_addr, size_t len);
void master_unmap_flash_region(const struct registered_master *mast,
void *virt_addr, size_t len);
/* NOTE: flashctx is not used in default_delay. In this case, a context should be NULL. */
void programmer_delay(const struct flashrom_flashctx *flash, unsigned int usecs);
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
enum chipbustype {
BUS_NONE = 0,
BUS_PARALLEL = 1 << 0,
BUS_LPC = 1 << 1,
BUS_FWH = 1 << 2,
BUS_SPI = 1 << 3,
BUS_PROG = 1 << 4,
BUS_NONSPI = BUS_PARALLEL | BUS_LPC | BUS_FWH,
};
/*
* The following enum defines possible write granularities of flash chips. These tend to reflect the properties
* of the actual hardware not necessarily the write function(s) defined by the respective struct flashchip.
* The latter might (and should) be more precisely specified, e.g. they might bail out early if their execution
* would result in undefined chip contents.
*/
enum write_granularity {
/* We assume 256 byte granularity by default. */
WRITE_GRAN_256BYTES = 0,/* If less than 256 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_1BIT, /* Each bit can be cleared individually. */
WRITE_GRAN_1BYTE, /* A byte can be written once. Further writes to an already written byte cause
* its contents to be either undefined or to stay unchanged. */
WRITE_GRAN_128BYTES, /* If less than 128 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_264BYTES, /* If less than 264 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_512BYTES, /* If less than 512 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_528BYTES, /* If less than 528 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_1024BYTES, /* If less than 1024 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_1056BYTES, /* If less than 1056 bytes are written, the unwritten bytes are undefined. */
WRITE_GRAN_1BYTE_IMPLICIT_ERASE, /* EEPROMs and other chips with implicit erase and 1-byte writes. */
};
/*
* How many different contiguous runs of erase blocks with one size each do
* we have for a given erase function?
*/
#define NUM_ERASEREGIONS 5
/*
* How many different erase functions do we have per chip?
* Macronix MX25L25635F has 8 different functions.
*/
#define NUM_ERASEFUNCTIONS 8
#define MAX_CHIP_RESTORE_FUNCTIONS 4
/* Feature bits used for non-SPI only */
#define FEATURE_REGISTERMAP (1 << 0)
#define FEATURE_LONG_RESET (0 << 4)
#define FEATURE_SHORT_RESET (1 << 4)
#define FEATURE_EITHER_RESET FEATURE_LONG_RESET
#define FEATURE_RESET_MASK (FEATURE_LONG_RESET | FEATURE_SHORT_RESET)
#define FEATURE_ADDR_FULL (0 << 2)
#define FEATURE_ADDR_MASK (3 << 2)
#define FEATURE_ADDR_2AA (1 << 2)
#define FEATURE_ADDR_AAA (2 << 2)
#define FEATURE_ADDR_SHIFTED (1 << 5)
/* Feature bits used for SPI only */
#define FEATURE_WRSR_EWSR (1 << 6)
#define FEATURE_WRSR_WREN (1 << 7)
#define FEATURE_WRSR_EITHER (FEATURE_WRSR_EWSR | FEATURE_WRSR_WREN)
#define FEATURE_OTP (1 << 8)
#define FEATURE_QPI (1 << 9)
#define FEATURE_4BA_ENTER (1 << 10) /**< Can enter/exit 4BA mode with instructions 0xb7/0xe9 w/o WREN */
#define FEATURE_4BA_ENTER_WREN (1 << 11) /**< Can enter/exit 4BA mode with instructions 0xb7/0xe9 after WREN */
#define FEATURE_4BA_ENTER_EAR7 (1 << 12) /**< Can enter/exit 4BA mode by setting bit7 of the ext addr reg */
#define FEATURE_4BA_EAR_C5C8 (1 << 13) /**< Regular 3-byte operations can be used by writing the most
significant address byte into an extended address register
(using 0xc5/0xc8 instructions). */
#define FEATURE_4BA_EAR_1716 (1 << 14) /**< Like FEATURE_4BA_EAR_C5C8 but with 0x17/0x16 instructions. */
#define FEATURE_4BA_READ (1 << 15) /**< Native 4BA read instruction (0x13) is supported. */
#define FEATURE_4BA_FAST_READ (1 << 16) /**< Native 4BA fast read instruction (0x0c) is supported. */
#define FEATURE_4BA_WRITE (1 << 17) /**< Native 4BA byte program (0x12) is supported. */
/* 4BA Shorthands */
#define FEATURE_4BA_EAR_ANY (FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_EAR_1716)
#define FEATURE_4BA_NATIVE (FEATURE_4BA_READ | FEATURE_4BA_FAST_READ | FEATURE_4BA_WRITE)
#define FEATURE_4BA (FEATURE_4BA_ENTER | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE)
#define FEATURE_4BA_WREN (FEATURE_4BA_ENTER_WREN | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE)
#define FEATURE_4BA_EAR7 (FEATURE_4BA_ENTER_EAR7 | FEATURE_4BA_EAR_C5C8 | FEATURE_4BA_NATIVE)
/*
* Most flash chips are erased to ones and programmed to zeros. However, some
* other flash chips, such as the ENE KB9012 internal flash, work the opposite way.
*/
#define FEATURE_ERASED_ZERO (1 << 18)
/*
* Feature indicates that the chip does not require erase before writing:
* write operations can set any bit to any value without first doing an erase,
* but bulk erase operations may still be supported.
*
* EEPROMs usually behave this way (compare to Flash, which requires erase),
* for example the ST M95M02.
*/
#define FEATURE_NO_ERASE (1 << 19)
#define FEATURE_WRSR_EXT2 (1 << 20)
#define FEATURE_WRSR2 (1 << 21)
#define FEATURE_WRSR_EXT3 ((1 << 22) | FEATURE_WRSR_EXT2)
#define FEATURE_WRSR3 (1 << 23)
/*
* Whether chip has security register (RDSCUR/WRSCUR commands).
* Not to be confused with "secure registers" of OTP.
*/
#define FEATURE_SCUR (1 << 24)
/* Whether chip has configuration register (RDCR/WRSR_EXT2 commands) */
#define FEATURE_CFGR (1 << 25)
/*
* Whether the chip supports serial flash hardening specified in JESD260
*/
#define FEATURE_FLASH_HARDENING (1 << 26)
#define ERASED_VALUE(flash) (((flash)->chip->feature_bits & FEATURE_ERASED_ZERO) ? 0x00 : 0xff)
#define UNERASED_VALUE(flash) (((flash)->chip->feature_bits & FEATURE_ERASED_ZERO) ? 0xff : 0x00)
enum test_state {
OK = 0,
NT = 1, /* Not tested */
BAD, /* Known to not work */
DEP, /* Support depends on configuration (e.g. Intel flash descriptor) */
NA, /* Not applicable (e.g. write support on ROM chips) */
};
#define TEST_UNTESTED (struct tested){ .probe = NT, .read = NT, .erase = NT, .write = NT, .wp = NT }
#define TEST_OK_PROBE (struct tested){ .probe = OK, .read = NT, .erase = NT, .write = NT, .wp = NT }
#define TEST_OK_PR (struct tested){ .probe = OK, .read = OK, .erase = NT, .write = NT, .wp = NT }
#define TEST_OK_PRE (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = NT, .wp = NT }
#define TEST_OK_PREW (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = OK, .wp = NT }
#define TEST_OK_PREWB (struct tested){ .probe = OK, .read = OK, .erase = OK, .write = OK, .wp = OK }
#define TEST_BAD_PROBE (struct tested){ .probe = BAD, .read = NT, .erase = NT, .write = NT, .wp = NT }
#define TEST_BAD_PR (struct tested){ .probe = BAD, .read = BAD, .erase = NT, .write = NT, .wp = NT }
#define TEST_BAD_PRE (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = NT, .wp = NT }
#define TEST_BAD_PREW (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = BAD, .wp = NT }
#define TEST_BAD_PREWB (struct tested){ .probe = BAD, .read = BAD, .erase = BAD, .write = BAD, .wp = BAD }
struct flashrom_flashctx;
#define flashctx flashrom_flashctx /* TODO: Agree on a name and convert all occurrences. */
typedef int (erasefunc_t)(struct flashctx *flash, unsigned int addr, unsigned int blocklen);
enum flash_reg {
INVALID_REG = 0,
STATUS1,
STATUS2,
STATUS3,
SECURITY,
CONFIG,
MAX_REGISTERS
};
struct reg_bit_info {
/* Register containing the bit */
enum flash_reg reg;
/* Bit index within register */
uint8_t bit_index;
/*
* Writability of the bit. RW does not guarantee the bit will be
* writable, for example if status register protection is enabled.
*/
enum {
RO, /* Read only */
RW, /* Readable and writable */
OTP /* One-time programmable */
} writability;
};
struct wp_bits;
enum decode_range_func {
NO_DECODE_RANGE_FUNC = 0, /* 0 indicates no range decode function is set. */
DECODE_RANGE_SPI25 = 1,
DECODE_RANGE_SPI25_64K_BLOCK = 2,
DECODE_RANGE_SPI25_BIT_CMP = 3,
DECODE_RANGE_SPI25_2X_BLOCK = 4,
};
typedef void (decode_range_func_t)(size_t *start, size_t *len, const struct wp_bits *, size_t chip_len);
enum probe_func {
NO_PROBE_FUNC = 0, /* 0 indicates no probe function set. */
PROBE_JEDEC = 1,
PROBE_JEDEC_29GL,
PROBE_OPAQUE,
PROBE_EDI_KB9012,
PROBE_AT82802AB,
PROBE_W29EE011,
PROBE_EN29LV640B,
PROBE_SPI_AT25F,
PROBE_SPI_AT45DB,
PROBE_SPI_BIG_SPANSION,
PROBE_SPI_RDID,
PROBE_SPI_RDID4,
PROBE_SPI_REMS,
PROBE_SPI_RES1,
PROBE_SPI_RES2,
PROBE_SPI_SFDP,
PROBE_SPI_ST95,
};
enum write_func {
NO_WRITE_FUNC = 0, /* 0 indicates no write function set. */
WRITE_JEDEC = 1,
WRITE_JEDEC1,
WRITE_OPAQUE,
SPI_CHIP_WRITE1,
SPI_CHIP_WRITE256,
SPI_WRITE_AAI,
SPI_WRITE_AT45DB,
WRITE_28SF040,
WRITE_82802AB,
WRITE_EN29LV640B,
EDI_CHIP_WRITE,
#ifdef FLASHROM_TEST
TEST_WRITE_INJECTOR, /* special case must come last. */
#endif
};
typedef int (write_func_t)(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len);
#ifdef FLASHROM_TEST
extern write_func_t *g_test_write_injector;
#endif
enum read_func {
NO_READ_FUNC = 0, /* 0 indicates no read function set. */
SPI_CHIP_READ = 1,
READ_OPAQUE,
READ_MEMMAPPED,
EDI_CHIP_READ,
SPI_READ_AT45DB,
SPI_READ_AT45DB_E8,
#ifdef FLASHROM_TEST
TEST_READ_INJECTOR, /* special case must come last. */
#endif
};
typedef int (read_func_t)(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len);
int read_flash(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len);
#ifdef FLASHROM_TEST
extern read_func_t *g_test_read_injector;
#endif
enum block_erase_func {
NO_BLOCK_ERASE_FUNC = 0, /* 0 indicates no block erase function set. */
SPI_BLOCK_ERASE_EMULATION = 1,
SPI_BLOCK_ERASE_20,
SPI_BLOCK_ERASE_21,
SPI_BLOCK_ERASE_40,
SPI_BLOCK_ERASE_50,
SPI_BLOCK_ERASE_52,
SPI_BLOCK_ERASE_53,
SPI_BLOCK_ERASE_5C,
SPI_BLOCK_ERASE_60,
SPI_BLOCK_ERASE_62,
SPI_BLOCK_ERASE_81,
SPI_BLOCK_ERASE_C4,
SPI_BLOCK_ERASE_C7,
SPI_BLOCK_ERASE_D7,
SPI_BLOCK_ERASE_D8,
SPI_BLOCK_ERASE_DB,
SPI_BLOCK_ERASE_DC,
S25FL_BLOCK_ERASE,
S25FS_BLOCK_ERASE_D8,
JEDEC_SECTOR_ERASE,
JEDEC_BLOCK_ERASE,
JEDEC_CHIP_BLOCK_ERASE,
OPAQUE_ERASE,
SPI_ERASE_AT45CS_SECTOR,
SPI_ERASE_AT45DB_BLOCK,
SPI_ERASE_AT45DB_CHIP,
SPI_ERASE_AT45DB_PAGE,
SPI_ERASE_AT45DB_SECTOR,
ERASE_CHIP_28SF040,
ERASE_SECTOR_28SF040,
ERASE_BLOCK_82802AB,
ERASE_SECTOR_49LFXXXC,
STM50_SECTOR_ERASE,
EDI_CHIP_BLOCK_ERASE,
#ifdef FLASHROM_TEST
/* special cases must come last. */
TEST_ERASE_INJECTOR_1,
TEST_ERASE_INJECTOR_2,
TEST_ERASE_INJECTOR_3,
TEST_ERASE_INJECTOR_4,
TEST_ERASE_INJECTOR_5,
#endif
};
#ifdef FLASHROM_TEST
#define NUM_TEST_ERASE_INJECTORS 5
extern erasefunc_t *g_test_erase_injector[NUM_TEST_ERASE_INJECTORS];
#endif
enum blockprotect_func {
NO_BLOCKPROTECT_FUNC = 0, /* 0 indicates no unlock function set. */
SPI_DISABLE_BLOCKPROTECT,
SPI_DISABLE_BLOCKPROTECT_BP2_EP_SRWD,
SPI_DISABLE_BLOCKPROTECT_BP1_SRWD,
SPI_DISABLE_BLOCKPROTECT_BP2_SRWD,
SPI_DISABLE_BLOCKPROTECT_BP3_SRWD,
SPI_DISABLE_BLOCKPROTECT_BP4_SRWD,
SPI_DISABLE_BLOCKPROTECT_AT45DB,
SPI_DISABLE_BLOCKPROTECT_AT25F,
SPI_DISABLE_BLOCKPROTECT_AT25FS010,
SPI_DISABLE_BLOCKPROTECT_AT25FS040,
SPI_DISABLE_BLOCKPROTECT_AT25F512A,
SPI_DISABLE_BLOCKPROTECT_AT25F512B,
SPI_DISABLE_BLOCKPROTECT_AT2X_GLOBAL_UNPROTECT,
SPI_DISABLE_BLOCKPROTECT_AT2X_GLOBAL_UNPROTECT_SEC,
SPI_DISABLE_BLOCKPROTECT_SST26_GLOBAL_UNPROTECT,
SPI_DISABLE_BLOCKPROTECT_N25Q,
UNLOCK_REGSPACE2_BLOCK_ERASER_0,
UNLOCK_REGSPACE2_BLOCK_ERASER_1,
UNLOCK_REGSPACE2_UNIFORM_32K,
UNLOCK_REGSPACE2_UNIFORM_64K,
UNLOCK_28F004S5,
UNLOCK_LH28F008BJT,
UNLOCK_SST_FWHUB,
UNPROTECT_28SF040,
};
enum printlock_func {
NO_PRINTLOCK_FUNC,
PRINTLOCK_AT49F,
PRINTLOCK_REGSPACE2_BLOCK_ERASER_0,
PRINTLOCK_REGSPACE2_BLOCK_ERASER_1,
PRINTLOCK_SST_FWHUB,
PRINTLOCK_W39F010,
PRINTLOCK_W39L010,
PRINTLOCK_W39L020,
PRINTLOCK_W39L040,
PRINTLOCK_W39V040A,
PRINTLOCK_W39V040B,
PRINTLOCK_W39V040C,
PRINTLOCK_W39V040FA,
PRINTLOCK_W39V040FB,
PRINTLOCK_W39V040FC,
PRINTLOCK_W39V080A,
PRINTLOCK_W39V080FA,
PRINTLOCK_W39V080FA_DUAL,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25DF,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25DF_SEC,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25F,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25F4096,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25F512A,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25F512B,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25FS010,
SPI_PRETTYPRINT_STATUS_REGISTER_AT25FS040,
SPI_PRETTYPRINT_STATUS_REGISTER_AT26DF081A,
SPI_PRETTYPRINT_STATUS_REGISTER_AT45DB,
SPI_PRETTYPRINT_STATUS_REGISTER_BP1_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_BP2_BPL,
SPI_PRETTYPRINT_STATUS_REGISTER_BP2_EP_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_BP2_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_BP2_TB_BPL,
SPI_PRETTYPRINT_STATUS_REGISTER_SRWD_SEC_TB_BP2_WELWIP,
SPI_PRETTYPRINT_STATUS_REGISTER_BP3_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_BP4_SRWD,
SPI_PRETTYPRINT_STATUS_REGISTER_DEFAULT_WELWIP,
SPI_PRETTYPRINT_STATUS_REGISTER_EN25S_WP,
SPI_PRETTYPRINT_STATUS_REGISTER_N25Q,
SPI_PRETTYPRINT_STATUS_REGISTER_PLAIN,
SPI_PRETTYPRINT_STATUS_REGISTER_SST25,
SPI_PRETTYPRINT_STATUS_REGISTER_SST25VF016,
SPI_PRETTYPRINT_STATUS_REGISTER_SST25VF040B,
};
typedef int (printlockfunc_t)(struct flashctx *flash);
printlockfunc_t *lookup_printlock_func_ptr(struct flashctx *flash);
struct flashchip {
const char *vendor;
const char *name;
enum chipbustype bustype;
/*
* With 32bit manufacture_id and model_id we can cover IDs up to
* (including) the 4th bank of JEDEC JEP106W Standard Manufacturer's
* Identification code.
*/
uint32_t manufacture_id;
uint32_t model_id;
/* Total chip size in kilobytes */
unsigned int total_size;
/* Chip page size in bytes */
unsigned int page_size;
int feature_bits;
/* Indicate how well flashrom supports different operations of this flash chip. */
struct tested {
enum test_state probe;
enum test_state read;
enum test_state erase;
enum test_state write;
enum test_state wp;
} tested;
/*
* Group chips that have common command sets. This should ensure that
* no chip gets confused by a probing command for a very different class
* of chips.
*/
enum {
/* SPI25 is very common. Keep it at zero so we don't have
to specify it for each and every chip in the database.*/
SPI25 = 0,
SPI_EDI = 1,
} spi_cmd_set;
enum probe_func probe;
/* Delay after "enter/exit ID mode" commands in microseconds.
* NB: negative values have special meanings, see TIMING_* below.
*/
signed int probe_timing;
/*
* Erase blocks and associated erase function. Any chip erase function
* is stored as chip-sized virtual block together with said function.
* The logic for how to optimally select erase functions is in erasure_layout.c
*/
struct block_eraser {
struct eraseblock {
unsigned int size; /* Eraseblock size in bytes */
unsigned int count; /* Number of contiguous blocks with that size */
} eraseblocks[NUM_ERASEREGIONS];
/* a block_erase function should try to erase one block of size
* 'blocklen' at address 'blockaddr' and return 0 on success. */
enum block_erase_func block_erase;
} block_erasers[NUM_ERASEFUNCTIONS];
enum printlock_func printlock;
enum blockprotect_func unlock;
enum write_func write;
enum read_func read;
struct voltage {
uint16_t min;
uint16_t max;
} voltage;
enum write_granularity gran;
struct reg_bit_map {
/* Status register protection bit (SRP) */
struct reg_bit_info srp;
/* Status register lock bit (SRP) */
struct reg_bit_info srl;
/*
* Note: some datasheets refer to configuration bits that
* function like TB/SEC/CMP bits as BP bits (e.g. BP3 for a bit
* that functions like TB).
*
* As a convention, any config bit that functions like a
* TB/SEC/CMP bit should be assigned to the respective
* tb/sec/cmp field in this structure, even if the datasheet
* uses a different name.
*/
/* Block protection bits (BP) */
/* Extra element for terminator */
struct reg_bit_info bp[MAX_BP_BITS + 1];
/* Top/bottom protection bit (TB) */
struct reg_bit_info tb;
/* Sector/block protection bit (SEC) */
struct reg_bit_info sec;
/* Complement bit (CMP) */
struct reg_bit_info cmp;
/* Write Protect Selection (per sector protection when set) */
struct reg_bit_info wps;
} reg_bits;
/*
* Function that takes a set of WP config bits (e.g. BP, SEC, TB, etc)
* and determines what protection range they select.
*/
enum decode_range_func decode_range;
struct rpmc_config {
uint8_t op1_opcode;
uint8_t op2_opcode;
unsigned int num_counters;
/*
* Busy Polling Method :
* 0: Poll for OP1 busy using OP2 Extended Status[0].
* No OP1 Suspended State Support.
* 1: Poll for OP1 busy using Read Status (05H).
* Suspended State is supported.
*/
enum busy_polling_methods {
POLL_OP2_EXTENDED_STATUS = 0,
POLL_READ_STATUS = 1
} busy_polling_method;
unsigned int update_rate;
/* All times in microsecond (us) */
unsigned int polling_delay_read_counter_us;
unsigned int polling_short_delay_write_counter_us;
unsigned int polling_long_delay_write_counter_us;
} rpmc_ctx;
};
typedef int (*chip_restore_fn_cb_t)(struct flashctx *flash, void *data);
typedef int (blockprotect_func_t)(struct flashctx *flash);
blockprotect_func_t *lookup_blockprotect_func_ptr(const struct flashchip *const chip);
struct stage_progress {
size_t current;
size_t total;
};
struct flashrom_flashctx {
struct flashchip *chip;
/* FIXME: The memory mappings should be saved in a more structured way. */
/* The physical_* fields store the respective addresses in the physical address space of the CPU. */
uintptr_t physical_memory;
/* The virtual_* fields store where the respective physical address is mapped into flashrom's address
* space. A value equivalent to (chipaddr)ERROR_PTR indicates an invalid mapping (or none at all). */
chipaddr virtual_memory;
/* Some flash devices have an additional register space; semantics are like above. */
uintptr_t physical_registers;
chipaddr virtual_registers;
struct registered_master *mst;
const struct flashrom_layout *layout;
struct flashrom_layout *default_layout;
struct {
bool force;
bool force_boardmismatch;
bool verify_after_write;
bool verify_whole_chip;
bool skip_unreadable_regions;
bool skip_unwritable_regions;
} flags;
/* We cache the state of the extended address register (highest byte
* of a 4BA for 3BA instructions) and the state of the 4BA mode here.
* If possible, we enter 4BA mode early. If that fails, we make use
* of the extended address register.
*/
int address_high_byte;
bool in_4ba_mode;
int chip_restore_fn_count;
struct chip_restore_func_data {
chip_restore_fn_cb_t func;
void *data;
} chip_restore_fn[MAX_CHIP_RESTORE_FUNCTIONS];
/* Progress reporting */
flashrom_progress_callback *progress_callback;
struct flashrom_progress *progress_state;
struct stage_progress stage_progress[FLASHROM_PROGRESS_NR];
/* Maximum allowed % of redundant erase */
int sacrifice_ratio;
};
/* Timing used in probe routines. ZERO is -2 to differentiate between an unset
* field and zero delay.
*
* SPI devices will always have zero delay and ignore this field.
*/
#define TIMING_FIXME -1
/* this is intentionally same value as fixme */
#define TIMING_IGNORED -1
#define TIMING_ZERO -2
extern const struct flashchip flashchips[];
extern const unsigned int flashchips_size;
/* parallel.c */
void chip_writeb(const struct flashctx *flash, uint8_t val, chipaddr addr);
void chip_writew(const struct flashctx *flash, uint16_t val, chipaddr addr);
void chip_writel(const struct flashctx *flash, uint32_t val, chipaddr addr);
void chip_writen(const struct flashctx *flash, const uint8_t *buf, chipaddr addr, size_t len);
uint8_t chip_readb(const struct flashctx *flash, const chipaddr addr);
uint16_t chip_readw(const struct flashctx *flash, const chipaddr addr);
uint32_t chip_readl(const struct flashctx *flash, const chipaddr addr);
void chip_readn(const struct flashctx *flash, uint8_t *buf, const chipaddr addr, size_t len);
/* print.c */
int print_supported(void);
/* helpers.c */
uint32_t address_to_bits(uint32_t addr);
unsigned int bitcount(unsigned long a);
#undef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#undef MAX
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int max(int a, int b);
int min(int a, int b);
char *strcat_realloc(char *dest, const char *src);
void tolower_string(char *str);
uint8_t reverse_byte(uint8_t x);
void reverse_bytes(uint8_t *dst, const uint8_t *src, size_t length);
#ifdef __MINGW32__
char* strtok_r(char *str, const char *delim, char **nextp);
char *strndup(const char *str, size_t size);
#endif
#if defined(__DJGPP__) || (!defined(__LIBPAYLOAD__) && !defined(HAVE_STRNLEN))
size_t strnlen(const char *str, size_t n);
#endif
/* flashrom.c */
extern const char flashrom_version[];
char *flashbuses_to_text(enum chipbustype bustype);
int map_flash(struct flashctx *flash);
void unmap_flash(struct flashctx *flash);
int read_memmapped(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len);
int erase_flash(struct flashctx *flash);
int probe_flash(struct registered_master *mst, int startchip, struct flashctx *flash, int force, const char *const chip_to_probe);
int verify_range(struct flashctx *flash, const uint8_t *cmpbuf, unsigned int start, unsigned int len);
void emergency_help_message(void);
void print_version(void);
void print_buildinfo(void);
void print_banner(void);
void list_programmers_linebreak(int startcol, int cols, int paren);
int selfcheck(void);
int read_buf_from_file(unsigned char *buf, unsigned long size, const char *filename);
int write_buf_to_file(const unsigned char *buf, unsigned long size, const char *filename);
int prepare_flash_access(struct flashctx *, bool read_it, bool write_it, bool erase_it, bool verify_it);
void finalize_flash_access(struct flashctx *);
int register_chip_restore(chip_restore_fn_cb_t func, struct flashctx *flash, void *data);
int check_block_eraser(const struct flashctx *flash, int k, int log);
unsigned int count_usable_erasers(const struct flashctx *flash);
int need_erase(const uint8_t *have, const uint8_t *want, unsigned int len, enum write_granularity gran, const uint8_t erased_value);
erasefunc_t *lookup_erase_func_ptr(const struct block_eraser *const eraser);
int check_erased_range(struct flashctx *flash, unsigned int start, unsigned int len);
unsigned int get_next_write(const uint8_t *have, const uint8_t *want, unsigned int len, unsigned int *first_start, enum write_granularity gran);
int write_flash(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len);
/* Something happened that shouldn't happen, but we can go on. */
#define ERROR_FLASHROM_NONFATAL 0x100
/* Something happened that shouldn't happen, we'll abort. */
#define ERROR_FLASHROM_FATAL -0xee
#define ERROR_FLASHROM_BUG -200
/* We reached one of the hardcoded limits of flashrom. This can be fixed by
* increasing the limit of a compile-time allocation or by switching to dynamic
* allocation.
* Note: If this warning is triggered, check first for runaway registrations.
*/
#define ERROR_FLASHROM_LIMIT -201
struct cli_progress {
unsigned int stage_pc[FLASHROM_PROGRESS_NR];
unsigned int visible_stages; /* Bitmask of stages with non-zero progress. */
bool stage_setup; /* Flag to know when to reset progress data. */
};
/* cli_common.c */
void print_chip_support_status(const struct flashchip *chip);
/* libflashrom.c */
/* Let gcc and clang check for correct printf-style format strings. */
int print(enum flashrom_log_level level, const char *fmt, ...)
#ifdef __MINGW32__
# ifndef __MINGW_PRINTF_FORMAT
# define __MINGW_PRINTF_FORMAT gnu_printf
# endif
__attribute__((format(__MINGW_PRINTF_FORMAT, 2, 3)));
#else
__attribute__((format(printf, 2, 3)));
#endif
#define msg_gerr(...) print(FLASHROM_MSG_ERROR, __VA_ARGS__) /* general errors */
#define msg_perr(...) print(FLASHROM_MSG_ERROR, __VA_ARGS__) /* programmer errors */
#define msg_cerr(...) print(FLASHROM_MSG_ERROR, __VA_ARGS__) /* chip errors */
#define msg_gwarn(...) print(FLASHROM_MSG_WARN, __VA_ARGS__) /* general warnings */
#define msg_pwarn(...) print(FLASHROM_MSG_WARN, __VA_ARGS__) /* programmer warnings */
#define msg_cwarn(...) print(FLASHROM_MSG_WARN, __VA_ARGS__) /* chip warnings */
#define msg_ginfo(...) print(FLASHROM_MSG_INFO, __VA_ARGS__) /* general info */
#define msg_pinfo(...) print(FLASHROM_MSG_INFO, __VA_ARGS__) /* programmer info */
#define msg_cinfo(...) print(FLASHROM_MSG_INFO, __VA_ARGS__) /* chip info */
#define msg_gdbg(...) print(FLASHROM_MSG_DEBUG, __VA_ARGS__) /* general debug */
#define msg_pdbg(...) print(FLASHROM_MSG_DEBUG, __VA_ARGS__) /* programmer debug */
#define msg_cdbg(...) print(FLASHROM_MSG_DEBUG, __VA_ARGS__) /* chip debug */
#define msg_gdbg2(...) print(FLASHROM_MSG_DEBUG2, __VA_ARGS__) /* general debug2 */
#define msg_pdbg2(...) print(FLASHROM_MSG_DEBUG2, __VA_ARGS__) /* programmer debug2 */
#define msg_cdbg2(...) print(FLASHROM_MSG_DEBUG2, __VA_ARGS__) /* chip debug2 */
#define msg_gspew(...) print(FLASHROM_MSG_SPEW, __VA_ARGS__) /* general debug spew */
#define msg_pspew(...) print(FLASHROM_MSG_SPEW, __VA_ARGS__) /* programmer debug spew */
#define msg_cspew(...) print(FLASHROM_MSG_SPEW, __VA_ARGS__) /* chip debug spew */
void init_progress(struct flashctx *flash, enum flashrom_progress_stage stage, size_t total);
void update_progress(struct flashctx *flash, enum flashrom_progress_stage stage, size_t increment);
/* spi.c */
struct spi_command {
unsigned int writecnt;
unsigned int readcnt;
const unsigned char *writearr;
unsigned char *readarr;
};
#define NULL_SPI_CMD { 0, 0, NULL, NULL, }
int spi_send_command(const struct flashctx *flash, unsigned int writecnt, unsigned int readcnt, const unsigned char *writearr, unsigned char *readarr);
int spi_send_multicommand(const struct flashctx *flash, struct spi_command *cmds);
enum chipbustype get_buses_supported(void);
#endif /* !__FLASH_H__ */