1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-27 07:02:34 +02:00
flashrom/ichspi.c
Michael Karcher b9dbe48b77 Kill central list of SPI programmers
Remove the array spi_programmer, replace it by dynamic registration
instead. Also initially start with no busses supported, and switch to
the default non-SPI only for the internal programmer.

Also this patch changes the initialization for the buses_supported variable
from "everything-except-SPI" to "nothing". All programmers have to set the
bus type on their own, and this enables register_spi_programmer to just add
the SPI both for on-board SPI interfaces (where the internal programmer
already detected the other bus types), as well as for external programmers
(where we have the default "none").

Corresponding to flashrom svn r1299.

Signed-off-by: Michael Karcher <flashrom@mkarcher.dialup.fu-berlin.de>
Acked-by: Carl-Daniel Hailfinger <c-d.hailfinger.devel.2006@gmx.net>
2011-05-11 17:07:07 +00:00

1292 lines
36 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2008 Stefan Wildemann <stefan.wildemann@kontron.com>
* Copyright (C) 2008 Claus Gindhart <claus.gindhart@kontron.com>
* Copyright (C) 2008 Dominik Geyer <dominik.geyer@kontron.com>
* Copyright (C) 2008 coresystems GmbH <info@coresystems.de>
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* This module is designed for supporting the devices
* ST M25P40
* ST M25P80
* ST M25P16
* ST M25P32 already tested
* ST M25P64
* AT 25DF321 already tested
* ... and many more SPI flash devices
*
*/
#if defined(__i386__) || defined(__x86_64__)
#include <string.h>
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
/* ICH9 controller register definition */
#define ICH9_REG_FADDR 0x08 /* 32 Bits */
#define ICH9_REG_FDATA0 0x10 /* 64 Bytes */
#define ICH9_REG_SSFS 0x90 /* 08 Bits */
#define SSFS_SCIP 0x00000001
#define SSFS_CDS 0x00000004
#define SSFS_FCERR 0x00000008
#define SSFS_AEL 0x00000010
#define SSFS_RESERVED_MASK 0x000000e2
#define ICH9_REG_SSFC 0x91 /* 24 Bits */
#define SSFC_SCGO 0x00000200
#define SSFC_ACS 0x00000400
#define SSFC_SPOP 0x00000800
#define SSFC_COP 0x00001000
#define SSFC_DBC 0x00010000
#define SSFC_DS 0x00400000
#define SSFC_SME 0x00800000
#define SSFC_SCF 0x01000000
#define SSFC_SCF_20MHZ 0x00000000
#define SSFC_SCF_33MHZ 0x01000000
#define SSFC_RESERVED_MASK 0xf8008100
#define ICH9_REG_PREOP 0x94 /* 16 Bits */
#define ICH9_REG_OPTYPE 0x96 /* 16 Bits */
#define ICH9_REG_OPMENU 0x98 /* 64 Bits */
// ICH9R SPI commands
#define SPI_OPCODE_TYPE_READ_NO_ADDRESS 0
#define SPI_OPCODE_TYPE_WRITE_NO_ADDRESS 1
#define SPI_OPCODE_TYPE_READ_WITH_ADDRESS 2
#define SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS 3
// ICH7 registers
#define ICH7_REG_SPIS 0x00 /* 16 Bits */
#define SPIS_SCIP 0x0001
#define SPIS_GRANT 0x0002
#define SPIS_CDS 0x0004
#define SPIS_FCERR 0x0008
#define SPIS_RESERVED_MASK 0x7ff0
/* VIA SPI is compatible with ICH7, but maxdata
to transfer is 16 bytes.
DATA byte count on ICH7 is 8:13, on VIA 8:11
bit 12 is port select CS0 CS1
bit 13 is FAST READ enable
bit 7 is used with fast read and one shot controls CS de-assert?
*/
#define ICH7_REG_SPIC 0x02 /* 16 Bits */
#define SPIC_SCGO 0x0002
#define SPIC_ACS 0x0004
#define SPIC_SPOP 0x0008
#define SPIC_DS 0x4000
#define ICH7_REG_SPIA 0x04 /* 32 Bits */
#define ICH7_REG_SPID0 0x08 /* 64 Bytes */
#define ICH7_REG_PREOP 0x54 /* 16 Bits */
#define ICH7_REG_OPTYPE 0x56 /* 16 Bits */
#define ICH7_REG_OPMENU 0x58 /* 64 Bits */
/* ICH SPI configuration lock-down. May be set during chipset enabling. */
static int ichspi_lock = 0;
uint32_t ichspi_bbar = 0;
static void *ich_spibar = NULL;
typedef struct _OPCODE {
uint8_t opcode; //This commands spi opcode
uint8_t spi_type; //This commands spi type
uint8_t atomic; //Use preop: (0: none, 1: preop0, 2: preop1
} OPCODE;
/* Suggested opcode definition:
* Preop 1: Write Enable
* Preop 2: Write Status register enable
*
* OP 0: Write address
* OP 1: Read Address
* OP 2: ERASE block
* OP 3: Read Status register
* OP 4: Read ID
* OP 5: Write Status register
* OP 6: chip private (read JEDEC id)
* OP 7: Chip erase
*/
typedef struct _OPCODES {
uint8_t preop[2];
OPCODE opcode[8];
} OPCODES;
static OPCODES *curopcodes = NULL;
/* HW access functions */
static uint32_t REGREAD32(int X)
{
return mmio_readl(ich_spibar + X);
}
static uint16_t REGREAD16(int X)
{
return mmio_readw(ich_spibar + X);
}
static uint16_t REGREAD8(int X)
{
return mmio_readb(ich_spibar + X);
}
#define REGWRITE32(X,Y) mmio_writel(Y, ich_spibar+X)
#define REGWRITE16(X,Y) mmio_writew(Y, ich_spibar+X)
#define REGWRITE8(X,Y) mmio_writeb(Y, ich_spibar+X)
/* Common SPI functions */
static int find_opcode(OPCODES *op, uint8_t opcode);
static int find_preop(OPCODES *op, uint8_t preop);
static int generate_opcodes(OPCODES * op);
static int program_opcodes(OPCODES *op, int enable_undo);
static int run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data);
/* for pairing opcodes with their required preop */
struct preop_opcode_pair {
uint8_t preop;
uint8_t opcode;
};
/* List of opcodes which need preopcodes and matching preopcodes. Unused. */
const struct preop_opcode_pair pops[] = {
{JEDEC_WREN, JEDEC_BYTE_PROGRAM},
{JEDEC_WREN, JEDEC_SE}, /* sector erase */
{JEDEC_WREN, JEDEC_BE_52}, /* block erase */
{JEDEC_WREN, JEDEC_BE_D8}, /* block erase */
{JEDEC_WREN, JEDEC_CE_60}, /* chip erase */
{JEDEC_WREN, JEDEC_CE_C7}, /* chip erase */
/* FIXME: WRSR requires either EWSR or WREN depending on chip type. */
{JEDEC_WREN, JEDEC_WRSR},
{JEDEC_EWSR, JEDEC_WRSR},
{0,}
};
/* Reasonable default configuration. Needs ad-hoc modifications if we
* encounter unlisted opcodes. Fun.
*/
static OPCODES O_ST_M25P = {
{
JEDEC_WREN,
JEDEC_EWSR,
},
{
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
{JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
}
};
/* List of opcodes with their corresponding spi_type
* It is used to reprogram the chipset OPCODE table on-the-fly if an opcode
* is needed which is currently not in the chipset OPCODE table
*/
static OPCODE POSSIBLE_OPCODES[] = {
{JEDEC_BYTE_PROGRAM, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Write Byte
{JEDEC_READ, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Data
{JEDEC_BE_D8, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Erase Sector
{JEDEC_RDSR, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read Device Status Reg
{JEDEC_REMS, SPI_OPCODE_TYPE_READ_WITH_ADDRESS, 0}, // Read Electronic Manufacturer Signature
{JEDEC_WRSR, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Write Status Register
{JEDEC_RDID, SPI_OPCODE_TYPE_READ_NO_ADDRESS, 0}, // Read JDEC ID
{JEDEC_CE_C7, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Bulk erase
{JEDEC_SE, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Sector erase
{JEDEC_BE_52, SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS, 0}, // Block erase
{JEDEC_AAI_WORD_PROGRAM, SPI_OPCODE_TYPE_WRITE_NO_ADDRESS, 0}, // Auto Address Increment
};
static OPCODES O_EXISTING = {};
static uint8_t lookup_spi_type(uint8_t opcode)
{
int a;
for (a = 0; a < sizeof(POSSIBLE_OPCODES)/sizeof(POSSIBLE_OPCODES[0]); a++) {
if (POSSIBLE_OPCODES[a].opcode == opcode)
return POSSIBLE_OPCODES[a].spi_type;
}
return 0xFF;
}
static int reprogram_opcode_on_the_fly(uint8_t opcode, unsigned int writecnt, unsigned int readcnt)
{
uint8_t spi_type;
spi_type = lookup_spi_type(opcode);
if (spi_type > 3) {
/* Try to guess spi type from read/write sizes.
* The following valid writecnt/readcnt combinations exist:
* writecnt = 4, readcnt >= 0
* writecnt = 1, readcnt >= 0
* writecnt >= 4, readcnt = 0
* writecnt >= 1, readcnt = 0
* writecnt >= 1 is guaranteed for all commands.
*/
if (readcnt == 0)
/* if readcnt=0 and writecount >= 4, we don't know if it is WRITE_NO_ADDRESS
* or WRITE_WITH_ADDRESS. But if we use WRITE_NO_ADDRESS and the first 3 data
* bytes are actual the address, they go to the bus anyhow
*/
spi_type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
else if (writecnt == 1) // and readcnt is > 0
spi_type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
else if (writecnt == 4) // and readcnt is > 0
spi_type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
// else we have an invalid case, will be handled below
}
if (spi_type <= 3) {
int oppos=2; // use original JEDEC_BE_D8 offset
curopcodes->opcode[oppos].opcode = opcode;
curopcodes->opcode[oppos].spi_type = spi_type;
program_opcodes(curopcodes, 0);
oppos = find_opcode(curopcodes, opcode);
msg_pdbg ("on-the-fly OPCODE (0x%02X) re-programmed, op-pos=%d\n", opcode, oppos);
return oppos;
}
return -1;
}
static int find_opcode(OPCODES *op, uint8_t opcode)
{
int a;
for (a = 0; a < 8; a++) {
if (op->opcode[a].opcode == opcode)
return a;
}
return -1;
}
static int find_preop(OPCODES *op, uint8_t preop)
{
int a;
for (a = 0; a < 2; a++) {
if (op->preop[a] == preop)
return a;
}
return -1;
}
/* Create a struct OPCODES based on what we find in the locked down chipset. */
static int generate_opcodes(OPCODES * op)
{
int a;
uint16_t preop, optype;
uint32_t opmenu[2];
if (op == NULL) {
msg_perr("\n%s: null OPCODES pointer!\n", __func__);
return -1;
}
switch (spi_programmer->type) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_VIA:
preop = REGREAD16(ICH7_REG_PREOP);
optype = REGREAD16(ICH7_REG_OPTYPE);
opmenu[0] = REGREAD32(ICH7_REG_OPMENU);
opmenu[1] = REGREAD32(ICH7_REG_OPMENU + 4);
break;
case SPI_CONTROLLER_ICH9:
preop = REGREAD16(ICH9_REG_PREOP);
optype = REGREAD16(ICH9_REG_OPTYPE);
opmenu[0] = REGREAD32(ICH9_REG_OPMENU);
opmenu[1] = REGREAD32(ICH9_REG_OPMENU + 4);
break;
default:
msg_perr("%s: unsupported chipset\n", __func__);
return -1;
}
op->preop[0] = (uint8_t) preop;
op->preop[1] = (uint8_t) (preop >> 8);
for (a = 0; a < 8; a++) {
op->opcode[a].spi_type = (uint8_t) (optype & 0x3);
optype >>= 2;
}
for (a = 0; a < 4; a++) {
op->opcode[a].opcode = (uint8_t) (opmenu[0] & 0xff);
opmenu[0] >>= 8;
}
for (a = 4; a < 8; a++) {
op->opcode[a].opcode = (uint8_t) (opmenu[1] & 0xff);
opmenu[1] >>= 8;
}
/* No preopcodes used by default. */
for (a = 0; a < 8; a++)
op->opcode[a].atomic = 0;
return 0;
}
static int program_opcodes(OPCODES *op, int enable_undo)
{
uint8_t a;
uint16_t preop, optype;
uint32_t opmenu[2];
/* Program Prefix Opcodes */
/* 0:7 Prefix Opcode 1 */
preop = (op->preop[0]);
/* 8:16 Prefix Opcode 2 */
preop |= ((uint16_t) op->preop[1]) << 8;
/* Program Opcode Types 0 - 7 */
optype = 0;
for (a = 0; a < 8; a++) {
optype |= ((uint16_t) op->opcode[a].spi_type) << (a * 2);
}
/* Program Allowable Opcodes 0 - 3 */
opmenu[0] = 0;
for (a = 0; a < 4; a++) {
opmenu[0] |= ((uint32_t) op->opcode[a].opcode) << (a * 8);
}
/*Program Allowable Opcodes 4 - 7 */
opmenu[1] = 0;
for (a = 4; a < 8; a++) {
opmenu[1] |= ((uint32_t) op->opcode[a].opcode) << ((a - 4) * 8);
}
msg_pdbg("\n%s: preop=%04x optype=%04x opmenu=%08x%08x\n", __func__, preop, optype, opmenu[0], opmenu[1]);
switch (spi_programmer->type) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_VIA:
/* Register undo only for enable_undo=1, i.e. first call. */
if (enable_undo) {
rmmio_valw(ich_spibar + ICH7_REG_PREOP);
rmmio_valw(ich_spibar + ICH7_REG_OPTYPE);
rmmio_vall(ich_spibar + ICH7_REG_OPMENU);
rmmio_vall(ich_spibar + ICH7_REG_OPMENU + 4);
}
mmio_writew(preop, ich_spibar + ICH7_REG_PREOP);
mmio_writew(optype, ich_spibar + ICH7_REG_OPTYPE);
mmio_writel(opmenu[0], ich_spibar + ICH7_REG_OPMENU);
mmio_writel(opmenu[1], ich_spibar + ICH7_REG_OPMENU + 4);
break;
case SPI_CONTROLLER_ICH9:
/* Register undo only for enable_undo=1, i.e. first call. */
if (enable_undo) {
rmmio_valw(ich_spibar + ICH9_REG_PREOP);
rmmio_valw(ich_spibar + ICH9_REG_OPTYPE);
rmmio_vall(ich_spibar + ICH9_REG_OPMENU);
rmmio_vall(ich_spibar + ICH9_REG_OPMENU + 4);
}
mmio_writew(preop, ich_spibar + ICH9_REG_PREOP);
mmio_writew(optype, ich_spibar + ICH9_REG_OPTYPE);
mmio_writel(opmenu[0], ich_spibar + ICH9_REG_OPMENU);
mmio_writel(opmenu[1], ich_spibar + ICH9_REG_OPMENU + 4);
break;
default:
msg_perr("%s: unsupported chipset\n", __func__);
return -1;
}
return 0;
}
/*
* Try to set BBAR (BIOS Base Address Register), but read back the value in case
* it didn't stick.
*/
void ich_set_bbar(uint32_t minaddr)
{
#define BBAR_MASK 0x00ffff00
minaddr &= BBAR_MASK;
switch (spi_programmer->type) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_VIA:
ichspi_bbar = mmio_readl(ich_spibar + 0x50) & ~BBAR_MASK;
if (ichspi_bbar)
msg_pdbg("Reserved bits in BBAR not zero: 0x%04x",
ichspi_bbar);
ichspi_bbar |= minaddr;
rmmio_writel(ichspi_bbar, ich_spibar + 0x50);
ichspi_bbar = mmio_readl(ich_spibar + 0x50);
/* We don't have any option except complaining. And if the write
* failed, the restore will fail as well, so no problem there.
*/
if (ichspi_bbar != minaddr)
msg_perr("Setting BBAR failed!\n");
break;
case SPI_CONTROLLER_ICH9:
ichspi_bbar = mmio_readl(ich_spibar + 0xA0) & ~BBAR_MASK;
if (ichspi_bbar)
msg_pdbg("Reserved bits in BBAR not zero: 0x%04x",
ichspi_bbar);
ichspi_bbar |= minaddr;
rmmio_writel(ichspi_bbar, ich_spibar + 0xA0);
ichspi_bbar = mmio_readl(ich_spibar + 0xA0);
/* We don't have any option except complaining. And if the write
* failed, the restore will fail as well, so no problem there.
*/
if (ichspi_bbar != minaddr)
msg_perr("Setting BBAR failed!\n");
break;
default:
msg_perr("Unknown chipset for BBAR setting!\n");
break;
}
}
/* This function generates OPCODES from or programs OPCODES to ICH according to
* the chipset's SPI configuration lock.
*
* It should be called before ICH sends any spi command.
*/
static int ich_init_opcodes(void)
{
int rc = 0;
OPCODES *curopcodes_done;
if (curopcodes)
return 0;
if (ichspi_lock) {
msg_pdbg("Reading OPCODES... ");
curopcodes_done = &O_EXISTING;
rc = generate_opcodes(curopcodes_done);
} else {
msg_pdbg("Programming OPCODES... ");
curopcodes_done = &O_ST_M25P;
rc = program_opcodes(curopcodes_done, 1);
/* Technically not part of opcode init, but it allows opcodes
* to run without transaction errors by setting the lowest
* allowed address to zero.
*/
ich_set_bbar(0);
}
if (rc) {
curopcodes = NULL;
msg_perr("failed\n");
return 1;
} else {
curopcodes = curopcodes_done;
msg_pdbg("done\n");
return 0;
}
}
static int ich7_run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data, int maxdata)
{
int write_cmd = 0;
int timeout;
uint32_t temp32 = 0;
uint16_t temp16;
uint32_t a;
uint64_t opmenu;
int opcode_index;
/* Is it a write command? */
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
write_cmd = 1;
}
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
while ((REGREAD16(ICH7_REG_SPIS) & SPIS_SCIP) && --timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("Error: SCIP never cleared!\n");
return 1;
}
/* Programm Offset in Flash into FADDR */
REGWRITE32(ICH7_REG_SPIA, (offset & 0x00FFFFFF)); /* SPI addresses are 24 BIT only */
/* Program data into FDATA0 to N */
if (write_cmd && (datalength != 0)) {
temp32 = 0;
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = 0;
}
temp32 |= ((uint32_t) data[a]) << ((a % 4) * 8);
if ((a % 4) == 3) {
REGWRITE32(ICH7_REG_SPID0 + (a - (a % 4)),
temp32);
}
}
if (((a - 1) % 4) != 3) {
REGWRITE32(ICH7_REG_SPID0 +
((a - 1) - ((a - 1) % 4)), temp32);
}
}
/* Assemble SPIS */
temp16 = REGREAD16(ICH7_REG_SPIS);
/* keep reserved bits */
temp16 &= SPIS_RESERVED_MASK;
/* clear error status registers */
temp16 |= (SPIS_CDS + SPIS_FCERR);
REGWRITE16(ICH7_REG_SPIS, temp16);
/* Assemble SPIC */
temp16 = 0;
if (datalength != 0) {
temp16 |= SPIC_DS;
temp16 |= ((uint32_t) ((datalength - 1) & (maxdata - 1))) << 8;
}
/* Select opcode */
opmenu = REGREAD32(ICH7_REG_OPMENU);
opmenu |= ((uint64_t)REGREAD32(ICH7_REG_OPMENU + 4)) << 32;
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
if ((opmenu & 0xff) == op.opcode) {
break;
}
opmenu >>= 8;
}
if (opcode_index == 8) {
msg_pdbg("Opcode %x not found.\n", op.opcode);
return 1;
}
temp16 |= ((uint16_t) (opcode_index & 0x07)) << 4;
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
/* Handle Atomic. Atomic commands include three steps:
- sending the preop (mainly EWSR or WREN)
- sending the main command
- waiting for the busy bit (WIP) to be cleared
This means the timeout must be sufficient for chip erase
of slow high-capacity chips.
*/
switch (op.atomic) {
case 2:
/* Select second preop. */
temp16 |= SPIC_SPOP;
/* And fall through. */
case 1:
/* Atomic command (preop+op) */
temp16 |= SPIC_ACS;
timeout = 100 * 1000 * 60; /* 60 seconds */
break;
}
/* Start */
temp16 |= SPIC_SCGO;
/* write it */
REGWRITE16(ICH7_REG_SPIC, temp16);
/* Wait for Cycle Done Status or Flash Cycle Error. */
while (((REGREAD16(ICH7_REG_SPIS) & (SPIS_CDS | SPIS_FCERR)) == 0) &&
--timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("timeout, ICH7_REG_SPIS=0x%04x\n",
REGREAD16(ICH7_REG_SPIS));
return 1;
}
/* FIXME: make sure we do not needlessly cause transaction errors. */
temp16 = REGREAD16(ICH7_REG_SPIS);
if (temp16 & SPIS_FCERR) {
msg_perr("Transaction error!\n");
/* keep reserved bits */
temp16 &= SPIS_RESERVED_MASK;
REGWRITE16(ICH7_REG_SPIS, temp16 | SPIS_FCERR);
return 1;
}
if ((!write_cmd) && (datalength != 0)) {
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = REGREAD32(ICH7_REG_SPID0 + (a));
}
data[a] =
(temp32 & (((uint32_t) 0xff) << ((a % 4) * 8)))
>> ((a % 4) * 8);
}
}
return 0;
}
static int ich9_run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data)
{
int write_cmd = 0;
int timeout;
uint32_t temp32;
uint32_t a;
uint64_t opmenu;
int opcode_index;
/* Is it a write command? */
if ((op.spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)
|| (op.spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS)) {
write_cmd = 1;
}
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
while ((REGREAD8(ICH9_REG_SSFS) & SSFS_SCIP) && --timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("Error: SCIP never cleared!\n");
return 1;
}
/* Programm Offset in Flash into FADDR */
REGWRITE32(ICH9_REG_FADDR, (offset & 0x00FFFFFF)); /* SPI addresses are 24 BIT only */
/* Program data into FDATA0 to N */
if (write_cmd && (datalength != 0)) {
temp32 = 0;
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = 0;
}
temp32 |= ((uint32_t) data[a]) << ((a % 4) * 8);
if ((a % 4) == 3) {
REGWRITE32(ICH9_REG_FDATA0 + (a - (a % 4)),
temp32);
}
}
if (((a - 1) % 4) != 3) {
REGWRITE32(ICH9_REG_FDATA0 +
((a - 1) - ((a - 1) % 4)), temp32);
}
}
/* Assemble SSFS + SSFC */
temp32 = REGREAD32(ICH9_REG_SSFS);
/* keep reserved bits */
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
/* clear error status registers */
temp32 |= (SSFS_CDS + SSFS_FCERR);
REGWRITE32(ICH9_REG_SSFS, temp32);
/* Use 20 MHz */
temp32 |= SSFC_SCF_20MHZ;
if (datalength != 0) {
uint32_t datatemp;
temp32 |= SSFC_DS;
datatemp = ((uint32_t) ((datalength - 1) & 0x3f)) << (8 + 8);
temp32 |= datatemp;
}
/* Select opcode */
opmenu = REGREAD32(ICH9_REG_OPMENU);
opmenu |= ((uint64_t)REGREAD32(ICH9_REG_OPMENU + 4)) << 32;
for (opcode_index = 0; opcode_index < 8; opcode_index++) {
if ((opmenu & 0xff) == op.opcode) {
break;
}
opmenu >>= 8;
}
if (opcode_index == 8) {
msg_pdbg("Opcode %x not found.\n", op.opcode);
return 1;
}
temp32 |= ((uint32_t) (opcode_index & 0x07)) << (8 + 4);
timeout = 100 * 60; /* 60 ms are 9.6 million cycles at 16 MHz. */
/* Handle Atomic. Atomic commands include three steps:
- sending the preop (mainly EWSR or WREN)
- sending the main command
- waiting for the busy bit (WIP) to be cleared
This means the timeout must be sufficient for chip erase
of slow high-capacity chips.
*/
switch (op.atomic) {
case 2:
/* Select second preop. */
temp32 |= SSFC_SPOP;
/* And fall through. */
case 1:
/* Atomic command (preop+op) */
temp32 |= SSFC_ACS;
timeout = 100 * 1000 * 60; /* 60 seconds */
break;
}
/* Start */
temp32 |= SSFC_SCGO;
/* write it */
REGWRITE32(ICH9_REG_SSFS, temp32);
/* Wait for Cycle Done Status or Flash Cycle Error. */
while (((REGREAD32(ICH9_REG_SSFS) & (SSFS_CDS | SSFS_FCERR)) == 0) &&
--timeout) {
programmer_delay(10);
}
if (!timeout) {
msg_perr("timeout, ICH9_REG_SSFS=0x%08x\n",
REGREAD32(ICH9_REG_SSFS));
return 1;
}
/* FIXME make sure we do not needlessly cause transaction errors. */
temp32 = REGREAD32(ICH9_REG_SSFS);
if (temp32 & SSFS_FCERR) {
msg_perr("Transaction error!\n");
/* keep reserved bits */
temp32 &= SSFS_RESERVED_MASK | SSFC_RESERVED_MASK;
/* Clear the transaction error. */
REGWRITE32(ICH9_REG_SSFS, temp32 | SSFS_FCERR);
return 1;
}
if ((!write_cmd) && (datalength != 0)) {
for (a = 0; a < datalength; a++) {
if ((a % 4) == 0) {
temp32 = REGREAD32(ICH9_REG_FDATA0 + (a));
}
data[a] =
(temp32 & (((uint32_t) 0xff) << ((a % 4) * 8)))
>> ((a % 4) * 8);
}
}
return 0;
}
static int run_opcode(OPCODE op, uint32_t offset,
uint8_t datalength, uint8_t * data)
{
switch (spi_programmer->type) {
case SPI_CONTROLLER_VIA:
if (datalength > 16) {
msg_perr("%s: Internal command size error for "
"opcode 0x%02x, got datalength=%i, want <=16\n",
__func__, op.opcode, datalength);
return SPI_INVALID_LENGTH;
}
return ich7_run_opcode(op, offset, datalength, data, 16);
case SPI_CONTROLLER_ICH7:
if (datalength > 64) {
msg_perr("%s: Internal command size error for "
"opcode 0x%02x, got datalength=%i, want <=16\n",
__func__, op.opcode, datalength);
return SPI_INVALID_LENGTH;
}
return ich7_run_opcode(op, offset, datalength, data, 64);
case SPI_CONTROLLER_ICH9:
if (datalength > 64) {
msg_perr("%s: Internal command size error for "
"opcode 0x%02x, got datalength=%i, want <=16\n",
__func__, op.opcode, datalength);
return SPI_INVALID_LENGTH;
}
return ich9_run_opcode(op, offset, datalength, data);
default:
msg_perr("%s: unsupported chipset\n", __func__);
}
/* If we ever get here, something really weird happened */
return -1;
}
static int ich_spi_send_command(unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr)
{
int result;
int opcode_index = -1;
const unsigned char cmd = *writearr;
OPCODE *opcode;
uint32_t addr = 0;
uint8_t *data;
int count;
/* find cmd in opcodes-table */
opcode_index = find_opcode(curopcodes, cmd);
if (opcode_index == -1) {
if (!ichspi_lock)
opcode_index = reprogram_opcode_on_the_fly(cmd, writecnt, readcnt);
if (opcode_index == -1) {
msg_pdbg("Invalid OPCODE 0x%02x\n", cmd);
return SPI_INVALID_OPCODE;
}
}
opcode = &(curopcodes->opcode[opcode_index]);
/* The following valid writecnt/readcnt combinations exist:
* writecnt = 4, readcnt >= 0
* writecnt = 1, readcnt >= 0
* writecnt >= 4, readcnt = 0
* writecnt >= 1, readcnt = 0
* writecnt >= 1 is guaranteed for all commands.
*/
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS) &&
(writecnt != 4)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want =4\n", __func__, cmd,
writecnt);
return SPI_INVALID_LENGTH;
}
if ((opcode->spi_type == SPI_OPCODE_TYPE_READ_NO_ADDRESS) &&
(writecnt != 1)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want =1\n", __func__, cmd,
writecnt);
return SPI_INVALID_LENGTH;
}
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) &&
(writecnt < 4)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got writecnt=%i, want >=4\n", __func__, cmd,
writecnt);
return SPI_INVALID_LENGTH;
}
if (((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) &&
(readcnt)) {
msg_perr("%s: Internal command size error for opcode "
"0x%02x, got readcnt=%i, want =0\n", __func__, cmd,
readcnt);
return SPI_INVALID_LENGTH;
}
/* if opcode-type requires an address */
if (opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS ||
opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
addr = (writearr[1] << 16) |
(writearr[2] << 8) | (writearr[3] << 0);
switch (spi_programmer->type) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_VIA:
case SPI_CONTROLLER_ICH9:
if (addr < ichspi_bbar) {
msg_perr("%s: Address 0x%06x below allowed "
"range 0x%06x-0xffffff\n", __func__,
addr, ichspi_bbar);
return SPI_INVALID_ADDRESS;
}
break;
default:
break;
}
}
/* translate read/write array/count */
if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS) {
data = (uint8_t *) (writearr + 1);
count = writecnt - 1;
} else if (opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) {
data = (uint8_t *) (writearr + 4);
count = writecnt - 4;
} else {
data = (uint8_t *) readarr;
count = readcnt;
}
result = run_opcode(*opcode, addr, count, data);
if (result) {
msg_pdbg("Running OPCODE 0x%02x failed ", opcode->opcode);
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_READ_WITH_ADDRESS)) {
msg_pdbg("at address 0x%06x ", addr);
}
msg_pdbg("(payload length was %d).\n", count);
/* Print out the data array if it contains data to write.
* Errors are detected before the received data is read back into
* the array so it won't make sense to print it then. */
if ((opcode->spi_type == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS) ||
(opcode->spi_type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS)) {
int i;
msg_pspew("The data was:\n");
for(i=0; i<count; i++){
msg_pspew("%3d: 0x%02x\n", i, data[i]);
}
}
}
return result;
}
static int ich_spi_send_multicommand(struct spi_command *cmds)
{
int ret = 0;
int i;
int oppos, preoppos;
for (; (cmds->writecnt || cmds->readcnt) && !ret; cmds++) {
if ((cmds + 1)->writecnt || (cmds + 1)->readcnt) {
/* Next command is valid. */
preoppos = find_preop(curopcodes, cmds->writearr[0]);
oppos = find_opcode(curopcodes, (cmds + 1)->writearr[0]);
if ((oppos == -1) && (preoppos != -1)) {
/* Current command is listed as preopcode in
* ICH struct OPCODES, but next command is not
* listed as opcode in that struct.
* Check for command sanity, then
* try to reprogram the ICH opcode list.
*/
if (find_preop(curopcodes,
(cmds + 1)->writearr[0]) != -1) {
msg_perr("%s: Two subsequent "
"preopcodes 0x%02x and 0x%02x, "
"ignoring the first.\n",
__func__, cmds->writearr[0],
(cmds + 1)->writearr[0]);
continue;
}
/* If the chipset is locked down, we'll fail
* during execution of the next command anyway.
* No need to bother with fixups.
*/
if (!ichspi_lock) {
oppos = reprogram_opcode_on_the_fly((cmds + 1)->writearr[0], (cmds + 1)->writecnt, (cmds + 1)->readcnt);
if (oppos == -1)
continue;
curopcodes->opcode[oppos].atomic = preoppos + 1;
continue;
}
}
if ((oppos != -1) && (preoppos != -1)) {
/* Current command is listed as preopcode in
* ICH struct OPCODES and next command is listed
* as opcode in that struct. Match them up.
*/
curopcodes->opcode[oppos].atomic = preoppos + 1;
continue;
}
/* If none of the above if-statements about oppos or
* preoppos matched, this is a normal opcode.
*/
}
ret = ich_spi_send_command(cmds->writecnt, cmds->readcnt,
cmds->writearr, cmds->readarr);
/* Reset the type of all opcodes to non-atomic. */
for (i = 0; i < 8; i++)
curopcodes->opcode[i].atomic = 0;
}
return ret;
}
#define ICH_BMWAG(x) ((x >> 24) & 0xff)
#define ICH_BMRAG(x) ((x >> 16) & 0xff)
#define ICH_BRWA(x) ((x >> 8) & 0xff)
#define ICH_BRRA(x) ((x >> 0) & 0xff)
#define ICH_FREG_BASE(x) ((x >> 0) & 0x1fff)
#define ICH_FREG_LIMIT(x) ((x >> 16) & 0x1fff)
static void do_ich9_spi_frap(uint32_t frap, int i)
{
static const char *const access_names[4] = {
"locked", "read-only", "write-only", "read-write"
};
static const char *const region_names[5] = {
"Flash Descriptor", "BIOS", "Management Engine",
"Gigabit Ethernet", "Platform Data"
};
uint32_t base, limit;
int rwperms = (((ICH_BRWA(frap) >> i) & 1) << 1) |
(((ICH_BRRA(frap) >> i) & 1) << 0);
int offset = 0x54 + i * 4;
uint32_t freg = mmio_readl(ich_spibar + offset);
msg_pdbg("0x%02X: 0x%08x (FREG%i: %s)\n",
offset, freg, i, region_names[i]);
base = ICH_FREG_BASE(freg);
limit = ICH_FREG_LIMIT(freg);
if (base == 0x1fff && limit == 0) {
/* this FREG is disabled */
msg_pdbg("%s region is unused.\n", region_names[i]);
return;
}
msg_pdbg("0x%08x-0x%08x is %s\n",
(base << 12), (limit << 12) | 0x0fff,
access_names[rwperms]);
}
static const struct spi_programmer spi_programmer_ich7 = {
.type = SPI_CONTROLLER_ICH7,
.max_data_read = 64,
.max_data_write = 64,
.command = ich_spi_send_command,
.multicommand = ich_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
};
static const struct spi_programmer spi_programmer_ich9 = {
.type = SPI_CONTROLLER_ICH9,
.max_data_read = 64,
.max_data_write = 64,
.command = ich_spi_send_command,
.multicommand = ich_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
};
int ich_init_spi(struct pci_dev *dev, uint32_t base, void *rcrb,
int ich_generation)
{
int i;
uint8_t old, new;
uint16_t spibar_offset, tmp2;
uint32_t tmp;
switch (ich_generation) {
case 7:
register_spi_programmer(&spi_programmer_ich7);
spibar_offset = 0x3020;
break;
case 8:
register_spi_programmer(&spi_programmer_ich9);
spibar_offset = 0x3020;
break;
case 9:
case 10:
default: /* Future version might behave the same */
register_spi_programmer(&spi_programmer_ich9);
spibar_offset = 0x3800;
break;
}
/* SPIBAR is at RCRB+0x3020 for ICH[78] and RCRB+0x3800 for ICH9. */
msg_pdbg("SPIBAR = 0x%x + 0x%04x\n", base, spibar_offset);
/* Assign Virtual Address */
ich_spibar = rcrb + spibar_offset;
switch (spi_programmer->type) {
case SPI_CONTROLLER_ICH7:
msg_pdbg("0x00: 0x%04x (SPIS)\n",
mmio_readw(ich_spibar + 0));
msg_pdbg("0x02: 0x%04x (SPIC)\n",
mmio_readw(ich_spibar + 2));
msg_pdbg("0x04: 0x%08x (SPIA)\n",
mmio_readl(ich_spibar + 4));
for (i = 0; i < 8; i++) {
int offs;
offs = 8 + (i * 8);
msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs,
mmio_readl(ich_spibar + offs), i);
msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4,
mmio_readl(ich_spibar + offs + 4), i);
}
ichspi_bbar = mmio_readl(ich_spibar + 0x50);
msg_pdbg("0x50: 0x%08x (BBAR)\n",
ichspi_bbar);
msg_pdbg("0x54: 0x%04x (PREOP)\n",
mmio_readw(ich_spibar + 0x54));
msg_pdbg("0x56: 0x%04x (OPTYPE)\n",
mmio_readw(ich_spibar + 0x56));
msg_pdbg("0x58: 0x%08x (OPMENU)\n",
mmio_readl(ich_spibar + 0x58));
msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n",
mmio_readl(ich_spibar + 0x5c));
for (i = 0; i < 4; i++) {
int offs;
offs = 0x60 + (i * 4);
msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs,
mmio_readl(ich_spibar + offs), i);
}
if (mmio_readw(ich_spibar) & (1 << 15)) {
msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n");
ichspi_lock = 1;
}
ich_init_opcodes();
break;
case SPI_CONTROLLER_ICH9:
tmp2 = mmio_readw(ich_spibar + 4);
msg_pdbg("0x04: 0x%04x (HSFS)\n", tmp2);
msg_pdbg("FLOCKDN %i, ", (tmp2 >> 15 & 1));
msg_pdbg("FDV %i, ", (tmp2 >> 14) & 1);
msg_pdbg("FDOPSS %i, ", (tmp2 >> 13) & 1);
msg_pdbg("SCIP %i, ", (tmp2 >> 5) & 1);
msg_pdbg("BERASE %i, ", (tmp2 >> 3) & 3);
msg_pdbg("AEL %i, ", (tmp2 >> 2) & 1);
msg_pdbg("FCERR %i, ", (tmp2 >> 1) & 1);
msg_pdbg("FDONE %i\n", (tmp2 >> 0) & 1);
tmp = mmio_readl(ich_spibar + 0x50);
msg_pdbg("0x50: 0x%08x (FRAP)\n", tmp);
msg_pdbg("BMWAG 0x%02x, ", ICH_BMWAG(tmp));
msg_pdbg("BMRAG 0x%02x, ", ICH_BMRAG(tmp));
msg_pdbg("BRWA 0x%02x, ", ICH_BRWA(tmp));
msg_pdbg("BRRA 0x%02x\n", ICH_BRRA(tmp));
/* print out the FREGx registers along with FRAP access bits */
for(i = 0; i < 5; i++)
do_ich9_spi_frap(tmp, i);
msg_pdbg("0x74: 0x%08x (PR0)\n",
mmio_readl(ich_spibar + 0x74));
msg_pdbg("0x78: 0x%08x (PR1)\n",
mmio_readl(ich_spibar + 0x78));
msg_pdbg("0x7C: 0x%08x (PR2)\n",
mmio_readl(ich_spibar + 0x7C));
msg_pdbg("0x80: 0x%08x (PR3)\n",
mmio_readl(ich_spibar + 0x80));
msg_pdbg("0x84: 0x%08x (PR4)\n",
mmio_readl(ich_spibar + 0x84));
tmp = mmio_readl(ich_spibar + 0x90);
msg_pdbg("0x90: 0x%02x (SSFS)\n", tmp & 0xff);
msg_pdbg("AEL %i, ", (tmp >> 4) & 1);
msg_pdbg("FCERR %i, ", (tmp >> 3) & 1);
msg_pdbg("FDONE %i, ", (tmp >> 2) & 1);
msg_pdbg("SCIP %i\n", (tmp >> 0) & 1);
if (tmp & (1 << 3)) {
msg_pdbg("Clearing SSFS.FCERR\n");
mmio_writeb(1 << 3, ich_spibar + 0x90);
}
tmp >>= 8;
msg_pdbg("0x91: 0x%06x (SSFC)\n", tmp);
msg_pdbg("0x94: 0x%04x (PREOP)\n",
mmio_readw(ich_spibar + 0x94));
msg_pdbg("0x96: 0x%04x (OPTYPE)\n",
mmio_readw(ich_spibar + 0x96));
msg_pdbg("0x98: 0x%08x (OPMENU)\n",
mmio_readl(ich_spibar + 0x98));
msg_pdbg("0x9C: 0x%08x (OPMENU+4)\n",
mmio_readl(ich_spibar + 0x9C));
ichspi_bbar = mmio_readl(ich_spibar + 0xA0);
msg_pdbg("0xA0: 0x%08x (BBAR)\n",
ichspi_bbar);
msg_pdbg("0xB0: 0x%08x (FDOC)\n",
mmio_readl(ich_spibar + 0xB0));
if (tmp2 & (1 << 15)) {
msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n");
ichspi_lock = 1;
}
ich_init_opcodes();
break;
default:
/* Nothing */
break;
}
old = pci_read_byte(dev, 0xdc);
msg_pdbg("SPI Read Configuration: ");
new = (old >> 2) & 0x3;
switch (new) {
case 0:
case 1:
case 2:
msg_pdbg("prefetching %sabled, caching %sabled, ",
(new & 0x2) ? "en" : "dis",
(new & 0x1) ? "dis" : "en");
break;
default:
msg_pdbg("invalid prefetching/caching settings, ");
break;
}
return 0;
}
static const struct spi_programmer spi_programmer_via = {
.type = SPI_CONTROLLER_VIA,
.max_data_read = 16,
.max_data_write = 16,
.command = ich_spi_send_command,
.multicommand = ich_spi_send_multicommand,
.read = default_spi_read,
.write_256 = default_spi_write_256,
};
int via_init_spi(struct pci_dev *dev)
{
uint32_t mmio_base;
int i;
mmio_base = (pci_read_long(dev, 0xbc)) << 8;
msg_pdbg("MMIO base at = 0x%x\n", mmio_base);
ich_spibar = physmap("VT8237S MMIO registers", mmio_base, 0x70);
/* Not sure if it speaks all these bus protocols. */
buses_supported = CHIP_BUSTYPE_LPC | CHIP_BUSTYPE_FWH;
register_spi_programmer(&spi_programmer_via);
msg_pdbg("0x00: 0x%04x (SPIS)\n", mmio_readw(ich_spibar + 0));
msg_pdbg("0x02: 0x%04x (SPIC)\n", mmio_readw(ich_spibar + 2));
msg_pdbg("0x04: 0x%08x (SPIA)\n", mmio_readl(ich_spibar + 4));
for (i = 0; i < 2; i++) {
int offs;
offs = 8 + (i * 8);
msg_pdbg("0x%02x: 0x%08x (SPID%d)\n", offs,
mmio_readl(ich_spibar + offs), i);
msg_pdbg("0x%02x: 0x%08x (SPID%d+4)\n", offs + 4,
mmio_readl(ich_spibar + offs + 4), i);
}
ichspi_bbar = mmio_readl(ich_spibar + 0x50);
msg_pdbg("0x50: 0x%08x (BBAR)\n", ichspi_bbar);
msg_pdbg("0x54: 0x%04x (PREOP)\n", mmio_readw(ich_spibar + 0x54));
msg_pdbg("0x56: 0x%04x (OPTYPE)\n", mmio_readw(ich_spibar + 0x56));
msg_pdbg("0x58: 0x%08x (OPMENU)\n", mmio_readl(ich_spibar + 0x58));
msg_pdbg("0x5c: 0x%08x (OPMENU+4)\n", mmio_readl(ich_spibar + 0x5c));
for (i = 0; i < 3; i++) {
int offs;
offs = 0x60 + (i * 4);
msg_pdbg("0x%02x: 0x%08x (PBR%d)\n", offs,
mmio_readl(ich_spibar + offs), i);
}
msg_pdbg("0x6c: 0x%04x (CLOCK/DEBUG)\n",
mmio_readw(ich_spibar + 0x6c));
if (mmio_readw(ich_spibar) & (1 << 15)) {
msg_pinfo("WARNING: SPI Configuration Lockdown activated.\n");
ichspi_lock = 1;
}
ich_init_opcodes();
return 0;
}
#endif