1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-10-19 00:31:23 +02:00
Files
flashrom/jedec.c
Antonio Vázquez 08d9c383ac parallel.h: Extract parallel declarations to a separate header
This patch moves all the declarations relevant to parallel into their own
header in include/parallel.h
The corresponding functions implementations are already in parallel.c,
so the declarations naturally can be in parallel.h
Currently, most of the declarations reside in flash.h making it difficult
to really understand file dependency.

Change-Id: I69f6e224a7ece373fbd6606e802930a52da1dd85
Signed-off-by: Antonio Vázquez <antoniovazquezblanco@gmail.com>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/89503
Reviewed-by: Anastasia Klimchuk <aklm@chromium.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2025-10-16 02:11:21 +00:00

476 lines
14 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2000 Silicon Integrated System Corporation
* Copyright (C) 2006 Giampiero Giancipoli <gianci@email.it>
* Copyright (C) 2006 coresystems GmbH <info@coresystems.de>
* Copyright (C) 2007-2012 Carl-Daniel Hailfinger
* Copyright (C) 2009 Sean Nelson <audiohacked@gmail.com>
* Copyright (C) 2014 Stefan Tauner
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "flash.h"
#include "parallel.h"
#include "chipdrivers.h"
#define MAX_REFLASH_TRIES 0x10
#define MASK_FULL 0xffff
#define MASK_2AA 0x7ff
#define MASK_AAA 0xfff
/* Check one byte for odd parity */
uint8_t oddparity(uint8_t val)
{
val = (val ^ (val >> 4)) & 0xf;
val = (val ^ (val >> 2)) & 0x3;
return (val ^ (val >> 1)) & 0x1;
}
static void toggle_ready_jedec_common(const struct flashctx *flash, chipaddr dst, unsigned int delay)
{
unsigned int i = 0;
uint8_t tmp1 = chip_readb(flash, dst) & 0x40;
while (i++ < 0xFFFFFFF) {
programmer_delay(flash, delay);
uint8_t tmp2 = chip_readb(flash, dst) & 0x40;
if (tmp1 == tmp2) {
break;
}
tmp1 = tmp2;
}
if (i > 0x100000)
msg_cdbg("%s: excessive loops, i=0x%x\n", __func__, i);
}
void toggle_ready_jedec(const struct flashctx *flash, chipaddr dst)
{
toggle_ready_jedec_common(flash, dst, 0);
}
/* Some chips require a minimum delay between toggle bit reads.
* The Winbond W39V040C wants 50 ms between reads on sector erase toggle,
* but experiments show that 2 ms are already enough. Pick a safety factor
* of 4 and use an 8 ms delay.
* Given that erase is slow on all chips, it is recommended to use
* toggle_ready_jedec_slow in erase functions.
*/
static void toggle_ready_jedec_slow(const struct flashctx *flash)
{
const chipaddr dst = flash->virtual_memory;
toggle_ready_jedec_common(flash, dst, 8 * 1000);
}
void data_polling_jedec(const struct flashctx *flash, chipaddr dst,
uint8_t data)
{
unsigned int i = 0;
data &= 0x80;
while (i++ < 0xFFFFFFF) {
uint8_t tmp = chip_readb(flash, dst) & 0x80;
if (tmp == data) {
break;
}
}
if (i > 0x100000)
msg_cdbg("%s: excessive loops, i=0x%x\n", __func__, i);
}
static unsigned int getaddrmask(const struct flashchip *chip)
{
switch (chip->feature_bits & FEATURE_ADDR_MASK) {
case FEATURE_ADDR_FULL:
return MASK_FULL;
break;
case FEATURE_ADDR_2AA:
return MASK_2AA;
break;
case FEATURE_ADDR_AAA:
return MASK_AAA;
break;
default:
msg_cerr("%s called with unknown mask\n", __func__);
return 0;
break;
}
}
static void start_program_jedec_common(const struct flashctx *flash)
{
const chipaddr bios = flash->virtual_memory;
const bool shifted = (flash->chip->feature_bits & FEATURE_ADDR_SHIFTED);
const unsigned int mask = getaddrmask(flash->chip);
chip_writeb(flash, 0xAA, bios + ((shifted ? 0x2AAA : 0x5555) & mask));
chip_writeb(flash, 0x55, bios + ((shifted ? 0x5555 : 0x2AAA) & mask));
chip_writeb(flash, 0xA0, bios + ((shifted ? 0x2AAA : 0x5555) & mask));
}
int probe_jedec_29gl(struct flashctx *flash)
{
const unsigned int mask = getaddrmask(flash->chip);
const chipaddr bios = flash->virtual_memory;
const struct flashchip *chip = flash->chip;
/* Reset chip to a clean slate */
chip_writeb(flash, 0xF0, bios + (0x5555 & mask));
/* Issue JEDEC Product ID Entry command */
chip_writeb(flash, 0xAA, bios + (0x5555 & mask));
chip_writeb(flash, 0x55, bios + (0x2AAA & mask));
chip_writeb(flash, 0x90, bios + (0x5555 & mask));
/* Read product ID */
// FIXME: Continuation loop, second byte is at word 0x100/byte 0x200
uint32_t man_id = chip_readb(flash, bios + 0x00);
uint32_t dev_id = (chip_readb(flash, bios + 0x01) << 16) |
(chip_readb(flash, bios + 0x0E) << 8) |
(chip_readb(flash, bios + 0x0F) << 0);
/* Issue JEDEC Product ID Exit command */
chip_writeb(flash, 0xF0, bios + (0x5555 & mask));
msg_cdbg("%s: man_id 0x%02"PRIx32", dev_id 0x%06"PRIx32"", __func__, man_id, dev_id);
if (!oddparity(man_id))
msg_cdbg(", man_id parity violation");
/* Read the product ID location again. We should now see normal flash contents. */
uint32_t flashcontent1 = chip_readb(flash, bios + 0x00); // FIXME: Continuation loop
uint32_t flashcontent2 = (chip_readb(flash, bios + 0x01) << 16) |
(chip_readb(flash, bios + 0x0E) << 8) |
(chip_readb(flash, bios + 0x0F) << 0);
if (man_id == flashcontent1)
msg_cdbg(", man_id seems to be normal flash content");
if (dev_id == flashcontent2)
msg_cdbg(", dev_id seems to be normal flash content");
msg_cdbg("\n");
if (man_id != chip->manufacture_id || dev_id != chip->model_id)
return 0;
return 1;
}
static int probe_timings(const struct flashchip *chip, unsigned int *tenter, unsigned int *texit)
{
if (chip->probe_timing > 0) {
*tenter = *texit = chip->probe_timing;
} else if (chip->probe_timing == TIMING_ZERO) { /* No delay. */
*tenter = *texit = 0;
} else if (chip->probe_timing == TIMING_FIXME) { /* == _IGNORED */
msg_cdbg("Chip lacks correct probe timing information, using default 10ms/40us. ");
*tenter = 10000;
*texit = 40;
} else {
msg_cerr("Chip has negative value in probe_timing, failing without chip access\n");
return -1;
}
return 0;
}
int probe_jedec(struct flashctx *flash)
{
const chipaddr bios = flash->virtual_memory;
const struct flashchip *chip = flash->chip;
const bool shifted = (flash->chip->feature_bits & FEATURE_ADDR_SHIFTED);
const unsigned int mask = getaddrmask(flash->chip);
uint8_t id1, id2;
uint32_t largeid1, largeid2;
uint32_t flashcontent1, flashcontent2;
unsigned int probe_timing_enter, probe_timing_exit;
if (probe_timings(chip, &probe_timing_enter, &probe_timing_exit) < 0)
return 0;
/* Earlier probes might have been too fast for the chip to enter ID
* mode completely. Allow the chip to finish this before seeing a
* reset command.
*/
programmer_delay(flash, probe_timing_enter);
/* Reset chip to a clean slate */
if ((chip->feature_bits & FEATURE_RESET_MASK) == FEATURE_LONG_RESET) {
chip_writeb(flash, 0xAA, bios + ((shifted ? 0x2AAA : 0x5555) & mask));
if (probe_timing_exit)
programmer_delay(flash, 10);
chip_writeb(flash, 0x55, bios + ((shifted ? 0x5555 : 0x2AAA) & mask));
if (probe_timing_exit)
programmer_delay(flash, 10);
}
chip_writeb(flash, 0xF0, bios + ((shifted ? 0x2AAA : 0x5555) & mask));
programmer_delay(flash, probe_timing_exit);
/* Issue JEDEC Product ID Entry command */
chip_writeb(flash, 0xAA, bios + ((shifted ? 0x2AAA : 0x5555) & mask));
if (probe_timing_enter)
programmer_delay(flash, 10);
chip_writeb(flash, 0x55, bios + ((shifted ? 0x5555 : 0x2AAA) & mask));
if (probe_timing_enter)
programmer_delay(flash, 10);
chip_writeb(flash, 0x90, bios + ((shifted ? 0x2AAA : 0x5555) & mask));
programmer_delay(flash, probe_timing_enter);
/* Read product ID */
id1 = chip_readb(flash, bios + (0x00 << shifted));
id2 = chip_readb(flash, bios + (0x01 << shifted));
largeid1 = id1;
largeid2 = id2;
/* Check if it is a continuation ID, this should be a while loop. */
if (id1 == 0x7F) {
largeid1 <<= 8;
id1 = chip_readb(flash, bios + 0x100);
largeid1 |= id1;
}
if (id2 == 0x7F) {
largeid2 <<= 8;
id2 = chip_readb(flash, bios + 0x101);
largeid2 |= id2;
}
/* Issue JEDEC Product ID Exit command */
if ((chip->feature_bits & FEATURE_RESET_MASK) == FEATURE_LONG_RESET) {
chip_writeb(flash, 0xAA, bios + ((shifted ? 0x2AAA : 0x5555) & mask));
if (probe_timing_exit)
programmer_delay(flash, 10);
chip_writeb(flash, 0x55, bios + ((shifted ? 0x5555 : 0x2AAA) & mask));
if (probe_timing_exit)
programmer_delay(flash, 10);
}
chip_writeb(flash, 0xF0, bios + ((shifted ? 0x2AAA : 0x5555) & mask));
programmer_delay(flash, probe_timing_exit);
msg_cdbg("%s: id1 0x%02"PRIx32", id2 0x%02"PRIx32"", __func__, largeid1, largeid2);
if (!oddparity(id1))
msg_cdbg(", id1 parity violation");
/* Read the product ID location again. We should now see normal flash contents. */
flashcontent1 = chip_readb(flash, bios + (0x00 << shifted));
flashcontent2 = chip_readb(flash, bios + (0x01 << shifted));
/* Check if it is a continuation ID, this should be a while loop. */
if (flashcontent1 == 0x7F) {
flashcontent1 <<= 8;
flashcontent1 |= chip_readb(flash, bios + 0x100);
}
if (flashcontent2 == 0x7F) {
flashcontent2 <<= 8;
flashcontent2 |= chip_readb(flash, bios + 0x101);
}
if (largeid1 == flashcontent1)
msg_cdbg(", id1 is normal flash content");
if (largeid2 == flashcontent2)
msg_cdbg(", id2 is normal flash content");
msg_cdbg("\n");
if (largeid1 != chip->manufacture_id || largeid2 != chip->model_id)
return 0;
return 1;
}
static void issuecmd(const struct flashctx *flash, uint8_t op, unsigned int operand)
{
const chipaddr bios = flash->virtual_memory;
bool shifted = (flash->chip->feature_bits & FEATURE_ADDR_SHIFTED);
const unsigned int mask = getaddrmask(flash->chip);
unsigned int delay_us = (flash->chip->probe_timing == TIMING_ZERO) ? 0 : 10;
if (!operand)
operand = (shifted ? 0x2AAA : 0x5555) & mask;
chip_writeb(flash, 0xAA, bios + ((shifted ? 0x2AAA : 0x5555) & mask));
programmer_delay(flash, delay_us);
chip_writeb(flash, 0x55, bios + ((shifted ? 0x5555 : 0x2AAA) & mask));
programmer_delay(flash, delay_us);
chip_writeb(flash, op, bios + operand);
programmer_delay(flash, delay_us);
}
int erase_sector_jedec(struct flashctx *flash, unsigned int page, unsigned int size)
{
/* Issue the Sector Erase command */
issuecmd(flash, 0x80, 0);
issuecmd(flash, 0x30, page);
/* Wait for Toggle bit ready */
toggle_ready_jedec_slow(flash);
/* FIXME: Check the status register for errors. */
return 0;
}
int erase_block_jedec(struct flashctx *flash, unsigned int block, unsigned int size)
{
/* Issue the Block Erase command */
issuecmd(flash, 0x80, 0);
issuecmd(flash, 0x50, block);
/* Wait for Toggle bit ready */
toggle_ready_jedec_slow(flash);
/* FIXME: Check the status register for errors. */
return 0;
}
/* erase chip with block_erase() prototype */
int erase_chip_block_jedec(struct flashctx *flash, unsigned int addr, unsigned int blocksize)
{
if ((addr != 0) || (blocksize != flash->chip->total_size * 1024)) {
msg_cerr("%s called with incorrect arguments\n", __func__);
return -1;
}
/* Issue the JEDEC Chip Erase command */
issuecmd(flash, 0x80, 0);
issuecmd(flash, 0x10, 0);
toggle_ready_jedec_slow(flash);
/* FIXME: Check the status register for errors. */
return 0;
}
static int write_byte_program_jedec_common(const struct flashctx *flash, const uint8_t *src,
chipaddr dst)
{
int tries = 0;
/* If the data is 0xFF, don't program it and don't complain. */
if (*src == 0xFF) {
return 0;
}
for (; tries < MAX_REFLASH_TRIES; tries++) {
const chipaddr bios = flash->virtual_memory;
/* Issue JEDEC Byte Program command */
start_program_jedec_common(flash);
/* transfer data from source to destination */
chip_writeb(flash, *src, dst);
toggle_ready_jedec(flash, bios);
if (chip_readb(flash, dst) == *src)
break;
}
return (tries >= MAX_REFLASH_TRIES) ? 1 : 0;
}
/* chunksize is 1 */
int write_jedec_1(struct flashctx *flash, const uint8_t *src, unsigned int start,
unsigned int len)
{
int failed = 0;
chipaddr dst = flash->virtual_memory + start;
const chipaddr olddst = dst;
for (unsigned int i = 0; i < len; i++) {
if (write_byte_program_jedec_common(flash, src, dst))
failed = 1;
dst++, src++;
update_progress(flash, FLASHROM_PROGRESS_WRITE, 1);
}
if (failed)
msg_cerr(" writing sector at 0x%" PRIxPTR " failed!\n", olddst);
return failed;
}
static int jedec_write_page(struct flashctx *flash, const uint8_t *src,
unsigned int start, unsigned int page_size)
{
int tries = 0, failed;
const uint8_t *s = src;
const chipaddr bios = flash->virtual_memory;
chipaddr dst = bios + start;
chipaddr d = dst;
for (; tries < MAX_REFLASH_TRIES; tries++) {
/* Issue JEDEC Start Program command */
start_program_jedec_common(flash);
/* transfer data from source to destination */
for (unsigned int i = 0; i < page_size; i++) {
/* If the data is 0xFF, don't program it */
if (*src != 0xFF)
chip_writeb(flash, *src, dst);
dst++;
src++;
}
toggle_ready_jedec(flash, dst - 1);
dst = d;
src = s;
failed = verify_range(flash, src, start, page_size);
if (!failed)
break;
msg_cerr("retrying.\n");
}
if (failed) {
msg_cerr(" page 0x%" PRIxPTR " failed!\n", (d - bios) / page_size);
}
return failed;
}
/* chunksize is page_size */
/*
* Write a part of the flash chip.
* FIXME: Use the chunk code from Michael Karcher instead.
* This function is a slightly modified copy of spi_write_chunked.
* Each page is written separately in chunks with a maximum size of chunksize.
*/
int write_jedec(struct flashctx *flash, const uint8_t *buf, unsigned int start,
int unsigned len)
{
unsigned int starthere, lenhere;
/* FIXME: page_size is the wrong variable. We need max_writechunk_size
* in struct flashctx to do this properly. All chips using
* write_jedec have page_size set to max_writechunk_size, so
* we're OK for now.
*/
const unsigned int page_size = flash->chip->page_size;
const unsigned int nwrites = (start + len - 1) / page_size;
/* Warning: This loop has a very unusual condition and body.
* The loop needs to go through each page with at least one affected
* byte. The lowest page number is (start / page_size) since that
* division rounds down. The highest page number we want is the page
* where the last byte of the range lives. That last byte has the
* address (start + len - 1), thus the highest page number is
* (start + len - 1) / page_size. Since we want to include that last
* page as well, the loop condition uses <=.
*/
for (unsigned int i = start / page_size; i <= nwrites; i++) {
/* Byte position of the first byte in the range in this page. */
/* starthere is an offset to the base address of the chip. */
starthere = max(start, i * page_size);
/* Length of bytes in the range in this page. */
lenhere = min(start + len, (i + 1) * page_size) - starthere;
if (jedec_write_page(flash, buf + starthere - start, starthere, lenhere))
return 1;
update_progress(flash, FLASHROM_PROGRESS_WRITE, lenhere);
}
return 0;
}