mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-26 22:52:34 +02:00

Tested mainboards: OK: - AOpen UK79G-1394 (used in EZ18 barebones) Reported by Lawrence Gough - ASUS M4N78 SE Reported by Dima Veselov - ASUS P5LD2-VM Mark board enable as tested (reported by Dima Veselov) - GIGABYTE GA-970A-UD3P (rev. 2.0) Reported by trucmar on IRC - GIGABYTE GA-990FXA-UD3 (rev. 4.0) Reported by ROKO__ on IRC - GIGABYTE GA-H77-DS3H (rev. 1.1) Reported by Evgeniy Edigarev - GIGABYTE GA-P55-USB3 (rev. 2.0) Reported by Måns Thörnqvist - MSI MS-7817 (H81M-E33) Reported by Igor Kolker Chipsets: - Marked Intel Bay Trail (0x0f1c) as tested OK Reported by Antonio Ospite - Refine Intel IDs * Add IDs for Braswell * Add IDs for 9 Series PCHs (e.g. H97, Z97) * Rename Wellsburg devices slightly Flash chips: - Atmel AT25DF041A to PREW (+PREW) Reported by Tai-hwa Liang - Atmel AT26DF161 to PREW (+EW) Reported by Steve Shenton - Atmel AT45DB011D to PREW (+PREW) Reported by The Raven - Atmel AT45DB642D to PREW (+PREW) Reported by Mahesh Mokal - Eon EN25F32 to PREW (+PREW) Reported by Arman Khodabande - Eon EN25F40 to PREW (+REW) Reported by Jerrad Pierce - Eon EN25QH16 to PREW (+EW) Reported by Ben Johnson - GigaDevice GD25Q20(B) to PREW (+PREW) Reported by Gilles Aurejac - Macronix MX25U6435E/F to PR (+PR) Reported by Matt Taggart - PMC Pm25LV512(A) to PREW (+PREW) Reported by The Raven - SST SST39VF020 to PREW (+PREW) Reported by Urja Rannikko - Winbond W25Q40.V to PREW (+EW) Reported by Torben Nielsen - Add E variants of MX25Lx006 (MX25L2006E, MX25L4006E, MX25L8006E). - Add MX25L6465E variant. - There was never a MX25L12805 AFAICT. - Split MX25L12805 from models with the same ID but an additional 32 kB eraser: MX25L12835F/MX25L12845E/MX25L12865E. - Add a bunch of ST parallel NOR flash chip IDs. Miscellaneous: - Whitelist ThinkPad X200. - Constify master parameter of register_master(). - Remove FEATURE_BYTEWRITES because it was never used at all. - Refine hwseq messages and make them less prominent. - Fix the yet unused PRIxCHIPADDR format string thingy. - Fix copy&paste error in spi_prettyprint_status_register_bp(). Spotted by Pablo Cases. - Add an additional SMBus controller revision to identify another Yangtze model. Thanks to Dan Christensen for reporting this issue. - dediprog: add missing include for stdlib.h. This fixes (at least) building on FreeBSD and DragonflyBSD with gcc. - Remove references to struct pci_filter from programmer.h. It is only needed in internal.c where it has a complete type. Having it in programmer.h provokes a warning by some old versions of gcc. - Tiny other stuff. Corresponding to flashrom svn r1879. Signed-off-by: Stefan Tauner <stefan.tauner@alumni.tuwien.ac.at> Acked-by: Stefan Tauner <stefan.tauner@alumni.tuwien.ac.at>
1007 lines
27 KiB
C
1007 lines
27 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2010 Carl-Daniel Hailfinger
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "platform.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <errno.h>
|
|
|
|
#if IS_WINDOWS
|
|
#include <lusb0_usb.h>
|
|
#else
|
|
#include <usb.h>
|
|
#endif
|
|
|
|
#include "flash.h"
|
|
#include "chipdrivers.h"
|
|
#include "programmer.h"
|
|
#include "spi.h"
|
|
|
|
#define FIRMWARE_VERSION(x,y,z) ((x << 16) | (y << 8) | z)
|
|
#define DEFAULT_TIMEOUT 3000
|
|
static usb_dev_handle *dediprog_handle;
|
|
static int dediprog_firmwareversion;
|
|
static int dediprog_endpoint;
|
|
|
|
#define DEDI_SPI_CMD_PAGEWRITE 0x1
|
|
#define DEDI_SPI_CMD_AAIWRITE 0x4
|
|
|
|
#if 0
|
|
/* Might be useful for other pieces of code as well. */
|
|
static void print_hex(void *buf, size_t len)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
msg_pdbg(" %02x", ((uint8_t *)buf)[i]);
|
|
}
|
|
#endif
|
|
|
|
/* Might be useful for other USB devices as well. static for now. */
|
|
/* device parameter allows user to specify one device of multiple installed */
|
|
static struct usb_device *get_device_by_vid_pid(uint16_t vid, uint16_t pid, unsigned int device)
|
|
{
|
|
struct usb_bus *bus;
|
|
struct usb_device *dev;
|
|
|
|
for (bus = usb_get_busses(); bus; bus = bus->next)
|
|
for (dev = bus->devices; dev; dev = dev->next)
|
|
if ((dev->descriptor.idVendor == vid) &&
|
|
(dev->descriptor.idProduct == pid)) {
|
|
if (device == 0)
|
|
return dev;
|
|
device--;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//int usb_control_msg(usb_dev_handle *dev, int requesttype, int request, int value, int index, char *bytes, int size, int timeout);
|
|
|
|
/* Set/clear LEDs on dediprog */
|
|
#define PASS_ON (0 << 0)
|
|
#define PASS_OFF (1 << 0)
|
|
#define BUSY_ON (0 << 1)
|
|
#define BUSY_OFF (1 << 1)
|
|
#define ERROR_ON (0 << 2)
|
|
#define ERROR_OFF (1 << 2)
|
|
static int current_led_status = -1;
|
|
|
|
static int dediprog_set_leds(int leds)
|
|
{
|
|
int ret, target_leds;
|
|
|
|
if (leds < 0 || leds > 7)
|
|
leds = 0; // Bogus value, enable all LEDs
|
|
|
|
if (leds == current_led_status)
|
|
return 0;
|
|
|
|
/* Older Dediprogs with 2.x.x and 3.x.x firmware only had
|
|
* two LEDs, and they were reversed. So map them around if
|
|
* we have an old device. On those devices the LEDs map as
|
|
* follows:
|
|
* bit 2 == 0: green light is on.
|
|
* bit 0 == 0: red light is on.
|
|
*/
|
|
if (dediprog_firmwareversion < FIRMWARE_VERSION(5,0,0)) {
|
|
target_leds = ((leds & ERROR_OFF) >> 2) |
|
|
((leds & PASS_OFF) << 2);
|
|
} else {
|
|
target_leds = leds;
|
|
}
|
|
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, target_leds,
|
|
NULL, 0x0, DEFAULT_TIMEOUT);
|
|
if (ret != 0x0) {
|
|
msg_perr("Command Set LED 0x%x failed (%s)!\n",
|
|
leds, usb_strerror());
|
|
return 1;
|
|
}
|
|
|
|
current_led_status = leds;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dediprog_set_spi_voltage(int millivolt)
|
|
{
|
|
int ret;
|
|
uint16_t voltage_selector;
|
|
|
|
switch (millivolt) {
|
|
case 0:
|
|
/* Admittedly this one is an assumption. */
|
|
voltage_selector = 0x0;
|
|
break;
|
|
case 1800:
|
|
voltage_selector = 0x12;
|
|
break;
|
|
case 2500:
|
|
voltage_selector = 0x11;
|
|
break;
|
|
case 3500:
|
|
voltage_selector = 0x10;
|
|
break;
|
|
default:
|
|
msg_perr("Unknown voltage %i mV! Aborting.\n", millivolt);
|
|
return 1;
|
|
}
|
|
msg_pdbg("Setting SPI voltage to %u.%03u V\n", millivolt / 1000,
|
|
millivolt % 1000);
|
|
|
|
if (voltage_selector == 0) {
|
|
/* Wait some time as the original driver does. */
|
|
programmer_delay(200 * 1000);
|
|
}
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x9, voltage_selector,
|
|
0xff, NULL, 0x0, DEFAULT_TIMEOUT);
|
|
if (ret != 0x0) {
|
|
msg_perr("Command Set SPI Voltage 0x%x failed!\n",
|
|
voltage_selector);
|
|
return 1;
|
|
}
|
|
if (voltage_selector != 0) {
|
|
/* Wait some time as the original driver does. */
|
|
programmer_delay(200 * 1000);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct dediprog_spispeeds {
|
|
const char *const name;
|
|
const int speed;
|
|
};
|
|
|
|
static const struct dediprog_spispeeds spispeeds[] = {
|
|
{ "24M", 0x0 },
|
|
{ "12M", 0x2 },
|
|
{ "8M", 0x1 },
|
|
{ "3M", 0x3 },
|
|
{ "2.18M", 0x4 },
|
|
{ "1.5M", 0x5 },
|
|
{ "750k", 0x6 },
|
|
{ "375k", 0x7 },
|
|
{ NULL, 0x0 },
|
|
};
|
|
|
|
/* After dediprog_set_spi_speed, the original app always calls
|
|
* dediprog_set_spi_voltage(0) and then
|
|
* dediprog_check_devicestring() four times in a row.
|
|
* After that, dediprog_command_a() is called.
|
|
* This looks suspiciously like the microprocessor in the SF100 has to be
|
|
* restarted/reinitialized in case the speed changes.
|
|
*/
|
|
static int dediprog_set_spi_speed(unsigned int spispeed_idx)
|
|
{
|
|
if (dediprog_firmwareversion < FIRMWARE_VERSION(5, 0, 0)) {
|
|
msg_pwarn("Skipping to set SPI speed because firmware is too old.\n");
|
|
return 0;
|
|
}
|
|
|
|
msg_pdbg("SPI speed is %s Hz\n", spispeeds[spispeed_idx].name);
|
|
|
|
int ret = usb_control_msg(dediprog_handle, 0x42, 0x61, spispeeds[spispeed_idx].speed, 0xff,
|
|
NULL, 0x0, DEFAULT_TIMEOUT);
|
|
if (ret != 0x0) {
|
|
msg_perr("Command Set SPI Speed 0x%x failed!\n", spispeeds[spispeed_idx].speed);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Bulk read interface, will read multiple 512 byte chunks aligned to 512 bytes.
|
|
* @start start address
|
|
* @len length
|
|
* @return 0 on success, 1 on failure
|
|
*/
|
|
static int dediprog_spi_bulk_read(struct flashctx *flash, uint8_t *buf,
|
|
unsigned int start, unsigned int len)
|
|
{
|
|
int ret;
|
|
unsigned int i;
|
|
/* chunksize must be 512, other sizes will NOT work at all. */
|
|
const unsigned int chunksize = 0x200;
|
|
const unsigned int count = len / chunksize;
|
|
const char count_and_chunk[] = {count & 0xff,
|
|
(count >> 8) & 0xff,
|
|
chunksize & 0xff,
|
|
(chunksize >> 8) & 0xff};
|
|
|
|
if ((start % chunksize) || (len % chunksize)) {
|
|
msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug "
|
|
"at flashrom@flashrom.org\n", __func__, start, len);
|
|
return 1;
|
|
}
|
|
|
|
/* No idea if the hardware can handle empty reads, so chicken out. */
|
|
if (!len)
|
|
return 0;
|
|
/* Command Read SPI Bulk. No idea which read command is used on the
|
|
* SPI side.
|
|
*/
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x20, start % 0x10000,
|
|
start / 0x10000, (char *)count_and_chunk,
|
|
sizeof(count_and_chunk), DEFAULT_TIMEOUT);
|
|
if (ret != sizeof(count_and_chunk)) {
|
|
msg_perr("Command Read SPI Bulk failed, %i %s!\n", ret,
|
|
usb_strerror());
|
|
return 1;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
ret = usb_bulk_read(dediprog_handle, 0x80 | dediprog_endpoint,
|
|
(char *)buf + i * chunksize, chunksize,
|
|
DEFAULT_TIMEOUT);
|
|
if (ret != chunksize) {
|
|
msg_perr("SPI bulk read %i failed, expected %i, got %i "
|
|
"%s!\n", i, chunksize, ret, usb_strerror());
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dediprog_spi_read(struct flashctx *flash, uint8_t *buf,
|
|
unsigned int start, unsigned int len)
|
|
{
|
|
int ret;
|
|
/* chunksize must be 512, other sizes will NOT work at all. */
|
|
const unsigned int chunksize = 0x200;
|
|
unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0;
|
|
unsigned int bulklen;
|
|
|
|
dediprog_set_leds(PASS_OFF|BUSY_ON|ERROR_OFF);
|
|
|
|
if (residue) {
|
|
msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n",
|
|
start, residue);
|
|
ret = spi_read_chunked(flash, buf, start, residue, 16);
|
|
if (ret) {
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Round down. */
|
|
bulklen = (len - residue) / chunksize * chunksize;
|
|
ret = dediprog_spi_bulk_read(flash, buf + residue, start + residue,
|
|
bulklen);
|
|
if (ret) {
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
|
|
return ret;
|
|
}
|
|
|
|
len -= residue + bulklen;
|
|
if (len) {
|
|
msg_pdbg("Slow read for partial block from 0x%x, length 0x%x\n",
|
|
start, len);
|
|
ret = spi_read_chunked(flash, buf + residue + bulklen,
|
|
start + residue + bulklen, len, 16);
|
|
if (ret) {
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
dediprog_set_leds(PASS_ON|BUSY_OFF|ERROR_OFF);
|
|
return 0;
|
|
}
|
|
|
|
/* Bulk write interface, will write multiple chunksize byte chunks aligned to chunksize bytes.
|
|
* @chunksize length of data chunks, only 256 supported by now
|
|
* @start start address
|
|
* @len length
|
|
* @dedi_spi_cmd dediprog specific write command for spi bus
|
|
* @return 0 on success, 1 on failure
|
|
*/
|
|
static int dediprog_spi_bulk_write(struct flashctx *flash, const uint8_t *buf, unsigned int chunksize,
|
|
unsigned int start, unsigned int len, uint8_t dedi_spi_cmd)
|
|
{
|
|
int ret;
|
|
unsigned int i;
|
|
/* USB transfer size must be 512, other sizes will NOT work at all.
|
|
* chunksize is the real data size per USB bulk transfer. The remaining
|
|
* space in a USB bulk transfer must be filled with 0xff padding.
|
|
*/
|
|
const unsigned int count = len / chunksize;
|
|
const char count_and_cmd[] = {count & 0xff, (count >> 8) & 0xff, 0x00, dedi_spi_cmd};
|
|
char usbbuf[512];
|
|
|
|
/*
|
|
* We should change this check to
|
|
* chunksize > 512
|
|
* once we know how to handle different chunk sizes.
|
|
*/
|
|
if (chunksize != 256) {
|
|
msg_perr("%s: Chunk sizes other than 256 bytes are unsupported, chunksize=%u!\n"
|
|
"Please report a bug at flashrom@flashrom.org\n", __func__, chunksize);
|
|
return 1;
|
|
}
|
|
|
|
if ((start % chunksize) || (len % chunksize)) {
|
|
msg_perr("%s: Unaligned start=%i, len=%i! Please report a bug "
|
|
"at flashrom@flashrom.org\n", __func__, start, len);
|
|
return 1;
|
|
}
|
|
|
|
/* No idea if the hardware can handle empty writes, so chicken out. */
|
|
if (!len)
|
|
return 0;
|
|
/* Command Write SPI Bulk. No idea which write command is used on the
|
|
* SPI side.
|
|
*/
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x30, start % 0x10000, start / 0x10000,
|
|
(char *)count_and_cmd, sizeof(count_and_cmd), DEFAULT_TIMEOUT);
|
|
if (ret != sizeof(count_and_cmd)) {
|
|
msg_perr("Command Write SPI Bulk failed, %i %s!\n", ret,
|
|
usb_strerror());
|
|
return 1;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
memset(usbbuf, 0xff, sizeof(usbbuf));
|
|
memcpy(usbbuf, buf + i * chunksize, chunksize);
|
|
ret = usb_bulk_write(dediprog_handle, dediprog_endpoint,
|
|
usbbuf, 512,
|
|
DEFAULT_TIMEOUT);
|
|
if (ret != 512) {
|
|
msg_perr("SPI bulk write failed, expected %i, got %i "
|
|
"%s!\n", 512, ret, usb_strerror());
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dediprog_spi_write(struct flashctx *flash, const uint8_t *buf,
|
|
unsigned int start, unsigned int len, uint8_t dedi_spi_cmd)
|
|
{
|
|
int ret;
|
|
const unsigned int chunksize = flash->chip->page_size;
|
|
unsigned int residue = start % chunksize ? chunksize - start % chunksize : 0;
|
|
unsigned int bulklen;
|
|
|
|
dediprog_set_leds(PASS_OFF|BUSY_ON|ERROR_OFF);
|
|
|
|
if (chunksize != 256) {
|
|
msg_pdbg("Page sizes other than 256 bytes are unsupported as "
|
|
"we don't know how dediprog\nhandles them.\n");
|
|
/* Write everything like it was residue. */
|
|
residue = len;
|
|
}
|
|
|
|
if (residue) {
|
|
msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n",
|
|
start, residue);
|
|
/* No idea about the real limit. Maybe 12, maybe more. */
|
|
ret = spi_write_chunked(flash, buf, start, residue, 12);
|
|
if (ret) {
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Round down. */
|
|
bulklen = (len - residue) / chunksize * chunksize;
|
|
ret = dediprog_spi_bulk_write(flash, buf + residue, chunksize, start + residue, bulklen, dedi_spi_cmd);
|
|
if (ret) {
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
|
|
return ret;
|
|
}
|
|
|
|
len -= residue + bulklen;
|
|
if (len) {
|
|
msg_pdbg("Slow write for partial block from 0x%x, length 0x%x\n",
|
|
start, len);
|
|
ret = spi_write_chunked(flash, buf + residue + bulklen,
|
|
start + residue + bulklen, len, 12);
|
|
if (ret) {
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
dediprog_set_leds(PASS_ON|BUSY_OFF|ERROR_OFF);
|
|
return 0;
|
|
}
|
|
|
|
static int dediprog_spi_write_256(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
|
|
{
|
|
return dediprog_spi_write(flash, buf, start, len, DEDI_SPI_CMD_PAGEWRITE);
|
|
}
|
|
|
|
static int dediprog_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
|
|
{
|
|
return dediprog_spi_write(flash, buf, start, len, DEDI_SPI_CMD_AAIWRITE);
|
|
}
|
|
|
|
static int dediprog_spi_send_command(struct flashctx *flash,
|
|
unsigned int writecnt,
|
|
unsigned int readcnt,
|
|
const unsigned char *writearr,
|
|
unsigned char *readarr)
|
|
{
|
|
int ret;
|
|
|
|
msg_pspew("%s, writecnt=%i, readcnt=%i\n", __func__, writecnt, readcnt);
|
|
/* Paranoid, but I don't want to be blamed if anything explodes. */
|
|
if (writecnt > 16) {
|
|
msg_perr("Untested writecnt=%i, aborting.\n", writecnt);
|
|
return 1;
|
|
}
|
|
/* 16 byte reads should work. */
|
|
if (readcnt > 16) {
|
|
msg_perr("Untested readcnt=%i, aborting.\n", readcnt);
|
|
return 1;
|
|
}
|
|
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x1, 0xff,
|
|
readcnt ? 0x1 : 0x0, (char *)writearr, writecnt,
|
|
DEFAULT_TIMEOUT);
|
|
if (ret != writecnt) {
|
|
msg_perr("Send SPI failed, expected %i, got %i %s!\n",
|
|
writecnt, ret, usb_strerror());
|
|
return 1;
|
|
}
|
|
if (!readcnt)
|
|
return 0;
|
|
memset(readarr, 0, readcnt);
|
|
ret = usb_control_msg(dediprog_handle, 0xc2, 0x01, 0xbb8, 0x0000,
|
|
(char *)readarr, readcnt, DEFAULT_TIMEOUT);
|
|
if (ret != readcnt) {
|
|
msg_perr("Receive SPI failed, expected %i, got %i %s!\n",
|
|
readcnt, ret, usb_strerror());
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int dediprog_check_devicestring(void)
|
|
{
|
|
int ret;
|
|
int fw[3];
|
|
char buf[0x11];
|
|
|
|
/* Command Prepare Receive Device String. */
|
|
memset(buf, 0, sizeof(buf));
|
|
ret = usb_control_msg(dediprog_handle, 0xc3, 0x7, 0x0, 0xef03, buf,
|
|
0x1, DEFAULT_TIMEOUT);
|
|
/* The char casting is needed to stop gcc complaining about an always true comparison. */
|
|
if ((ret != 0x1) || (buf[0] != (char)0xff)) {
|
|
msg_perr("Unexpected response to Command Prepare Receive Device"
|
|
" String!\n");
|
|
return 1;
|
|
}
|
|
/* Command Receive Device String. */
|
|
memset(buf, 0, sizeof(buf));
|
|
ret = usb_control_msg(dediprog_handle, 0xc2, 0x8, 0xff, 0xff, buf,
|
|
0x10, DEFAULT_TIMEOUT);
|
|
if (ret != 0x10) {
|
|
msg_perr("Incomplete/failed Command Receive Device String!\n");
|
|
return 1;
|
|
}
|
|
buf[0x10] = '\0';
|
|
msg_pdbg("Found a %s\n", buf);
|
|
if (memcmp(buf, "SF100", 0x5)) {
|
|
msg_perr("Device not a SF100!\n");
|
|
return 1;
|
|
}
|
|
if (sscanf(buf, "SF100 V:%d.%d.%d ", &fw[0], &fw[1], &fw[2]) != 3) {
|
|
msg_perr("Unexpected firmware version string!\n");
|
|
return 1;
|
|
}
|
|
/* Only these versions were tested. */
|
|
if (fw[0] < 2 || fw[0] > 5) {
|
|
msg_perr("Unexpected firmware version %d.%d.%d!\n", fw[0],
|
|
fw[1], fw[2]);
|
|
return 1;
|
|
}
|
|
dediprog_firmwareversion = FIRMWARE_VERSION(fw[0], fw[1], fw[2]);
|
|
return 0;
|
|
}
|
|
|
|
/* Command A seems to be some sort of device init. It is either followed by
|
|
* dediprog_check_devicestring (often) or Command A (often) or
|
|
* Command F (once).
|
|
*/
|
|
static int dediprog_command_a(void)
|
|
{
|
|
int ret;
|
|
char buf[0x1];
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
ret = usb_control_msg(dediprog_handle, 0xc3, 0xb, 0x0, 0x0, buf,
|
|
0x1, DEFAULT_TIMEOUT);
|
|
if (ret < 0) {
|
|
msg_perr("Command A failed (%s)!\n", usb_strerror());
|
|
return 1;
|
|
}
|
|
if ((ret != 0x1) || (buf[0] != 0x6f)) {
|
|
msg_perr("Unexpected response to Command A!\n");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
/* Something.
|
|
* Present in eng_detect_blink.log with firmware 3.1.8
|
|
* Always preceded by Command Receive Device String
|
|
*/
|
|
static int dediprog_command_b(void)
|
|
{
|
|
int ret;
|
|
char buf[0x3];
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
ret = usb_control_msg(dediprog_handle, 0xc3, 0x7, 0x0, 0xef00, buf,
|
|
0x3, DEFAULT_TIMEOUT);
|
|
if (ret < 0) {
|
|
msg_perr("Command B failed (%s)!\n", usb_strerror());
|
|
return 1;
|
|
}
|
|
if ((ret != 0x3) || (buf[0] != 0xff) || (buf[1] != 0xff) ||
|
|
(buf[2] != 0xff)) {
|
|
msg_perr("Unexpected response to Command B!\n");
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Command Chip Select is only sent after dediprog_check_devicestring, but not after every
|
|
* invocation of dediprog_check_devicestring. It is only sent after the first
|
|
* dediprog_command_a(); dediprog_check_devicestring() sequence in each session.
|
|
* Bit #1 of the value changes the chip select: 0 is target 1, 1 is target 2 and parameter target can be 1 or 2
|
|
* respectively. We don't know how to encode "3, Socket" and "0, reference card" yet. On SF100 the vendor
|
|
* software "DpCmd 6.0.4.06" selects target 2 when requesting 3 (which is unavailable on that hardware).
|
|
*/
|
|
static int dediprog_chip_select(int target)
|
|
{
|
|
int ret;
|
|
uint16_t value = ((target - 1) & 1) << 1;
|
|
msg_pdbg("Selecting target chip %i\n", target);
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x4, value, 0x0, NULL,
|
|
0x0, DEFAULT_TIMEOUT);
|
|
if (ret != 0x0) {
|
|
msg_perr("Command Chip Select failed (%s)!\n", usb_strerror());
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
/* Very strange. Seems to be a programmer keepalive or somesuch.
|
|
* Wait unsuccessfully for timeout ms to read one byte.
|
|
* Is usually called after setting voltage to 0.
|
|
* Present in all logs with Firmware 2.1.1 and 3.1.8
|
|
*/
|
|
static int dediprog_command_f(int timeout)
|
|
{
|
|
int ret;
|
|
char buf[0x1];
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
ret = usb_control_msg(dediprog_handle, 0xc2, 0x11, 0xff, 0xff, buf,
|
|
0x1, timeout);
|
|
/* This check is most probably wrong. Command F always causes a timeout
|
|
* in the logs, so we should check for timeout instead of checking for
|
|
* success.
|
|
*/
|
|
if (ret != 0x1) {
|
|
msg_perr("Command F failed (%s)!\n", usb_strerror());
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Start/stop blinking?
|
|
* Present in eng_detect_blink.log with firmware 3.1.8
|
|
* Preceded by Command J
|
|
*/
|
|
static int dediprog_command_g(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, 0x03, NULL, 0x0, DEFAULT_TIMEOUT);
|
|
if (ret != 0x0) {
|
|
msg_perr("Command G failed (%s)!\n", usb_strerror());
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Something.
|
|
* Present in all logs with firmware 5.1.5
|
|
* Always preceded by Command Receive Device String
|
|
* Always followed by Command Set SPI Voltage nonzero
|
|
*/
|
|
static int dediprog_command_h(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, 0x05, NULL, 0x0, DEFAULT_TIMEOUT);
|
|
if (ret != 0x0) {
|
|
msg_perr("Command H failed (%s)!\n", usb_strerror());
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Shutdown for firmware 5.x?
|
|
* Present in all logs with firmware 5.1.5
|
|
* Often preceded by a SPI operation (Command Read SPI Bulk or Receive SPI)
|
|
* Always followed by Command Set SPI Voltage 0x0000
|
|
*/
|
|
static int dediprog_command_i(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, 0x06, NULL, 0x0, DEFAULT_TIMEOUT);
|
|
if (ret != 0x0) {
|
|
msg_perr("Command I failed (%s)!\n", usb_strerror());
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Start/stop blinking?
|
|
* Present in all logs with firmware 5.1.5
|
|
* Always preceded by Command Receive Device String on 5.1.5
|
|
* Always followed by Command Set SPI Voltage nonzero on 5.1.5
|
|
* Present in eng_detect_blink.log with firmware 3.1.8
|
|
* Preceded by Command B in eng_detect_blink.log
|
|
* Followed by Command G in eng_detect_blink.log
|
|
*/
|
|
static int dediprog_command_j(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = usb_control_msg(dediprog_handle, 0x42, 0x07, 0x09, 0x07, NULL, 0x0, DEFAULT_TIMEOUT);
|
|
if (ret != 0x0) {
|
|
msg_perr("Command J failed (%s)!\n", usb_strerror());
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int parse_voltage(char *voltage)
|
|
{
|
|
char *tmp = NULL;
|
|
int i;
|
|
int millivolt = 0, fraction = 0;
|
|
|
|
if (!voltage || !strlen(voltage)) {
|
|
msg_perr("Empty voltage= specified.\n");
|
|
return -1;
|
|
}
|
|
millivolt = (int)strtol(voltage, &tmp, 0);
|
|
voltage = tmp;
|
|
/* Handle "," and "." as decimal point. Everything after it is assumed
|
|
* to be in decimal notation.
|
|
*/
|
|
if ((*voltage == '.') || (*voltage == ',')) {
|
|
voltage++;
|
|
for (i = 0; i < 3; i++) {
|
|
fraction *= 10;
|
|
/* Don't advance if the current character is invalid,
|
|
* but continue multiplying.
|
|
*/
|
|
if ((*voltage < '0') || (*voltage > '9'))
|
|
continue;
|
|
fraction += *voltage - '0';
|
|
voltage++;
|
|
}
|
|
/* Throw away remaining digits. */
|
|
voltage += strspn(voltage, "0123456789");
|
|
}
|
|
/* The remaining string must be empty or "mV" or "V". */
|
|
tolower_string(voltage);
|
|
|
|
/* No unit or "V". */
|
|
if ((*voltage == '\0') || !strncmp(voltage, "v", 1)) {
|
|
millivolt *= 1000;
|
|
millivolt += fraction;
|
|
} else if (!strncmp(voltage, "mv", 2) ||
|
|
!strncmp(voltage, "milliv", 6)) {
|
|
/* No adjustment. fraction is discarded. */
|
|
} else {
|
|
/* Garbage at the end of the string. */
|
|
msg_perr("Garbage voltage= specified.\n");
|
|
return -1;
|
|
}
|
|
return millivolt;
|
|
}
|
|
|
|
static int dediprog_setup(long target)
|
|
{
|
|
/* URB 6. Command A. */
|
|
if (dediprog_command_a()) {
|
|
return 1;
|
|
}
|
|
/* URB 7. Command A. */
|
|
if (dediprog_command_a()) {
|
|
return 1;
|
|
}
|
|
/* URB 8. Command Prepare Receive Device String. */
|
|
/* URB 9. Command Receive Device String. */
|
|
if (dediprog_check_devicestring()) {
|
|
return 1;
|
|
}
|
|
/* URB 10. Command Chip Select */
|
|
if (dediprog_chip_select(target)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct spi_master spi_master_dediprog = {
|
|
.type = SPI_CONTROLLER_DEDIPROG,
|
|
.max_data_read = MAX_DATA_UNSPECIFIED,
|
|
.max_data_write = MAX_DATA_UNSPECIFIED,
|
|
.command = dediprog_spi_send_command,
|
|
.multicommand = default_spi_send_multicommand,
|
|
.read = dediprog_spi_read,
|
|
.write_256 = dediprog_spi_write_256,
|
|
.write_aai = dediprog_spi_write_aai,
|
|
};
|
|
|
|
static int dediprog_shutdown(void *data)
|
|
{
|
|
msg_pspew("%s\n", __func__);
|
|
|
|
#if 0
|
|
/* Shutdown on firmware 5.x */
|
|
if (dediprog_firmwareversion == 5)
|
|
if (dediprog_command_i())
|
|
return 1;
|
|
#endif
|
|
|
|
/* URB 28. Command Set SPI Voltage to 0. */
|
|
if (dediprog_set_spi_voltage(0x0))
|
|
return 1;
|
|
|
|
if (usb_release_interface(dediprog_handle, 0)) {
|
|
msg_perr("Could not release USB interface!\n");
|
|
return 1;
|
|
}
|
|
if (usb_close(dediprog_handle)) {
|
|
msg_perr("Could not close USB device!\n");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* URB numbers refer to the first log ever captured. */
|
|
int dediprog_init(void)
|
|
{
|
|
struct usb_device *dev;
|
|
char *voltage, *device, *spispeed, *target_str;
|
|
int spispeed_idx = 1;
|
|
int millivolt = 3500;
|
|
long usedevice = 0;
|
|
long target = 1;
|
|
int i, ret;
|
|
|
|
msg_pspew("%s\n", __func__);
|
|
|
|
spispeed = extract_programmer_param("spispeed");
|
|
if (spispeed) {
|
|
for (i = 0; spispeeds[i].name; ++i) {
|
|
if (!strcasecmp(spispeeds[i].name, spispeed)) {
|
|
spispeed_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
if (!spispeeds[i].name) {
|
|
msg_perr("Error: Invalid spispeed value: '%s'.\n", spispeed);
|
|
free(spispeed);
|
|
return 1;
|
|
}
|
|
free(spispeed);
|
|
}
|
|
voltage = extract_programmer_param("voltage");
|
|
if (voltage) {
|
|
millivolt = parse_voltage(voltage);
|
|
free(voltage);
|
|
if (millivolt < 0)
|
|
return 1;
|
|
msg_pinfo("Setting voltage to %i mV\n", millivolt);
|
|
}
|
|
|
|
device = extract_programmer_param("device");
|
|
if (device) {
|
|
char *dev_suffix;
|
|
errno = 0;
|
|
usedevice = strtol(device, &dev_suffix, 10);
|
|
if (errno != 0 || device == dev_suffix) {
|
|
msg_perr("Error: Could not convert 'device'.\n");
|
|
free(device);
|
|
return 1;
|
|
}
|
|
if (usedevice < 0 || usedevice > UINT_MAX) {
|
|
msg_perr("Error: Value for 'device' is out of range.\n");
|
|
free(device);
|
|
return 1;
|
|
}
|
|
if (strlen(dev_suffix) > 0) {
|
|
msg_perr("Error: Garbage following 'device' value.\n");
|
|
free(device);
|
|
return 1;
|
|
}
|
|
msg_pinfo("Using device %li.\n", usedevice);
|
|
}
|
|
free(device);
|
|
|
|
target_str = extract_programmer_param("target");
|
|
if (target_str) {
|
|
char *target_suffix;
|
|
errno = 0;
|
|
target = strtol(target_str, &target_suffix, 10);
|
|
if (errno != 0 || target_str == target_suffix) {
|
|
msg_perr("Error: Could not convert 'target'.\n");
|
|
free(target_str);
|
|
return 1;
|
|
}
|
|
if (target < 1 || target > 2) {
|
|
msg_perr("Error: Value for 'target' is out of range.\n");
|
|
free(target_str);
|
|
return 1;
|
|
}
|
|
if (strlen(target_suffix) > 0) {
|
|
msg_perr("Error: Garbage following 'target' value.\n");
|
|
free(target_str);
|
|
return 1;
|
|
}
|
|
msg_pinfo("Using target %li.\n", target);
|
|
}
|
|
free(target_str);
|
|
|
|
/* Here comes the USB stuff. */
|
|
usb_init();
|
|
usb_find_busses();
|
|
usb_find_devices();
|
|
dev = get_device_by_vid_pid(0x0483, 0xdada, (unsigned int) usedevice);
|
|
if (!dev) {
|
|
msg_perr("Could not find a Dediprog SF100 on USB!\n");
|
|
return 1;
|
|
}
|
|
msg_pdbg("Found USB device (%04x:%04x).\n",
|
|
dev->descriptor.idVendor, dev->descriptor.idProduct);
|
|
dediprog_handle = usb_open(dev);
|
|
if (!dediprog_handle) {
|
|
msg_perr("Could not open USB device: %s\n", usb_strerror());
|
|
return 1;
|
|
}
|
|
ret = usb_set_configuration(dediprog_handle, 1);
|
|
if (ret < 0) {
|
|
msg_perr("Could not set USB device configuration: %i %s\n",
|
|
ret, usb_strerror());
|
|
if (usb_close(dediprog_handle))
|
|
msg_perr("Could not close USB device!\n");
|
|
return 1;
|
|
}
|
|
ret = usb_claim_interface(dediprog_handle, 0);
|
|
if (ret < 0) {
|
|
msg_perr("Could not claim USB device interface %i: %i %s\n",
|
|
0, ret, usb_strerror());
|
|
if (usb_close(dediprog_handle))
|
|
msg_perr("Could not close USB device!\n");
|
|
return 1;
|
|
}
|
|
dediprog_endpoint = 2;
|
|
|
|
if (register_shutdown(dediprog_shutdown, NULL))
|
|
return 1;
|
|
|
|
dediprog_set_leds(PASS_ON|BUSY_ON|ERROR_ON);
|
|
|
|
/* Perform basic setup. */
|
|
if (dediprog_setup(target)) {
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
|
|
return 1;
|
|
}
|
|
|
|
/* After setting voltage and speed, perform setup again. */
|
|
if (dediprog_set_spi_voltage(0) || dediprog_set_spi_speed(spispeed_idx) || dediprog_setup(target)) {
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
|
|
return 1;
|
|
}
|
|
|
|
/* URB 11. Command Set SPI Voltage. */
|
|
if (dediprog_set_spi_voltage(millivolt)) {
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_ON);
|
|
return 1;
|
|
}
|
|
|
|
register_spi_master(&spi_master_dediprog);
|
|
|
|
/* RE leftover, leave in until the driver is complete. */
|
|
#if 0
|
|
/* Execute RDID by hand if you want to test it. */
|
|
dediprog_do_stuff();
|
|
#endif
|
|
|
|
dediprog_set_leds(PASS_OFF|BUSY_OFF|ERROR_OFF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
/* Leftovers from reverse engineering. Keep for documentation purposes until
|
|
* completely understood.
|
|
*/
|
|
static int dediprog_do_stuff(void)
|
|
{
|
|
char buf[0x4];
|
|
/* SPI command processing starts here. */
|
|
|
|
/* URB 12. Command Send SPI. */
|
|
/* URB 13. Command Receive SPI. */
|
|
memset(buf, 0, sizeof(buf));
|
|
/* JEDEC RDID */
|
|
msg_pdbg("Sending RDID\n");
|
|
buf[0] = JEDEC_RDID;
|
|
if (dediprog_spi_send_command(JEDEC_RDID_OUTSIZE, JEDEC_RDID_INSIZE,
|
|
(unsigned char *)buf, (unsigned char *)buf))
|
|
return 1;
|
|
msg_pdbg("Receiving response: ");
|
|
print_hex(buf, JEDEC_RDID_INSIZE);
|
|
/* URB 14-27 are more SPI commands. */
|
|
/* URB 28. Command Set SPI Voltage. */
|
|
if (dediprog_set_spi_voltage(0x0))
|
|
return 1;
|
|
/* URB 29-38. Command F, unsuccessful wait. */
|
|
if (dediprog_command_f(544))
|
|
return 1;
|
|
/* URB 39. Command Set SPI Voltage. */
|
|
if (dediprog_set_spi_voltage(0x10))
|
|
return 1;
|
|
/* URB 40. Command Set SPI Speed. */
|
|
if (dediprog_set_spi_speed(0x2))
|
|
return 1;
|
|
/* URB 41 is just URB 28. */
|
|
/* URB 42,44,46,48,51,53 is just URB 8. */
|
|
/* URB 43,45,47,49,52,54 is just URB 9. */
|
|
/* URB 50 is just URB 6/7. */
|
|
/* URB 55-131 is just URB 29-38. (wait unsuccessfully for 4695 (maybe 4751) ms)*/
|
|
/* URB 132,134 is just URB 6/7. */
|
|
/* URB 133 is just URB 29-38. */
|
|
/* URB 135 is just URB 8. */
|
|
/* URB 136 is just URB 9. */
|
|
/* URB 137 is just URB 11. */
|
|
|
|
/* Command Start Bulk Read. Data is u16 blockcount, u16 blocksize. */
|
|
/* Command Start Bulk Write. Data is u16 blockcount, u16 blocksize. */
|
|
/* Bulk transfer sizes for Command Start Bulk Read/Write are always
|
|
* 512 bytes, rest is filled with 0xff.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
#endif
|