1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-27 07:02:34 +02:00
flashrom/hwaccess.c
Angel Pons 3bd47524c0 treewide: Drop most cases of sizeof(struct ...)
Spelling out the struct type name hurts readability and introduces
opportunities for bugs to happen when the pointer variable type is
changed but the corresponding sizeof is (are) not.

TEST=`make CONFIG_EVERYTHING=yes CONFIG_JLINK_SPI=no VERSION=none -j`
with and without this patch; the flashrom executable does not change.

Change-Id: Icc0b60ca6ef9f5ece6ed2a0e03600bb6ccd7dcc6
Signed-off-by: Angel Pons <th3fanbus@gmail.com>
Reviewed-on: https://review.coreboot.org/c/flashrom/+/55266
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Nico Huber <nico.h@gmx.de>
Reviewed-by: Edward O'Callaghan <quasisec@chromium.org>
2021-06-09 16:03:30 +00:00

315 lines
7.9 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2009,2010 Carl-Daniel Hailfinger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "platform.h"
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#if !defined (__DJGPP__) && !defined(__LIBPAYLOAD__)
/* No file access needed/possible to get hardware access permissions. */
#include <unistd.h>
#include <fcntl.h>
#endif
#include "flash.h"
#include "programmer.h"
#include "hwaccess.h"
#if !(IS_LINUX || IS_MACOSX || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__DJGPP__) || defined(__LIBPAYLOAD__) || defined(__sun) || defined(__gnu_hurd__))
#error "Unknown operating system"
#endif
#if IS_LINUX || IS_MACOSX || defined(__NetBSD__) || defined(__OpenBSD__)
#define USE_IOPL 1
#else
#define USE_IOPL 0
#endif
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
#define USE_DEV_IO 1
#else
#define USE_DEV_IO 0
#endif
#if defined(__gnu_hurd__)
#define USE_IOPERM 1
#else
#define USE_IOPERM 0
#endif
#if USE_IOPERM
#include <sys/io.h>
#endif
#if IS_X86 && USE_DEV_IO
int io_fd;
#endif
/* Prevent reordering and/or merging of reads/writes to hardware.
* Such reordering and/or merging would break device accesses which depend on the exact access order.
*/
static inline void sync_primitive(void)
{
/* This is not needed for...
* - x86: uses uncached accesses which have a strongly ordered memory model.
* - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model.
* - ARM: uses a strongly ordered memory model for device memories.
*
* See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt
*/
#if IS_PPC // cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h
asm("eieio" : : : "memory");
#elif IS_SPARC
#if defined(__sparc_v9__) || defined(__sparcv9)
/* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like
* RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we
* use the strongest hardware memory barriers that exist on Sparc V9. */
asm volatile ("membar #Sync" ::: "memory");
#elif defined(__sparc_v8__) || defined(__sparcv8)
/* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run
* on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable
* operation in the V8 instruction set anyway. If you know better then please tell us. */
asm volatile ("stbar");
#else
#error Unknown and/or unsupported SPARC instruction set version detected.
#endif
#endif
}
#if IS_X86 && !(defined(__DJGPP__) || defined(__LIBPAYLOAD__))
static int release_io_perms(void *p)
{
#if defined (__sun)
sysi86(SI86V86, V86SC_IOPL, 0);
#elif USE_DEV_IO
close(io_fd);
#elif USE_IOPERM
ioperm(0, 65536, 0);
#elif USE_IOPL
iopl(0);
#endif
return 0;
}
#endif
/* Get I/O permissions with automatic permission release on shutdown. */
int rget_io_perms(void)
{
#if IS_X86 && !(defined(__DJGPP__) || defined(__LIBPAYLOAD__))
#if defined (__sun)
if (sysi86(SI86V86, V86SC_IOPL, PS_IOPL) != 0) {
#elif USE_DEV_IO
if ((io_fd = open("/dev/io", O_RDWR)) < 0) {
#elif USE_IOPERM
if (ioperm(0, 65536, 1) != 0) {
#elif USE_IOPL
if (iopl(3) != 0) {
#endif
msg_perr("ERROR: Could not get I/O privileges (%s).\n", strerror(errno));
msg_perr("You need to be root.\n");
#if defined (__OpenBSD__)
msg_perr("If you are root already please set securelevel=-1 in /etc/rc.securelevel and\n"
"reboot, or reboot into single user mode.\n");
#elif defined(__NetBSD__)
msg_perr("If you are root already please reboot into single user mode or make sure\n"
"that your kernel configuration has the option INSECURE enabled.\n");
#endif
return 1;
} else {
register_shutdown(release_io_perms, NULL);
}
#else
/* DJGPP and libpayload environments have full PCI port I/O permissions by default. */
/* PCI port I/O support is unimplemented on PPC/MIPS and unavailable on ARM. */
#endif
return 0;
}
void mmio_writeb(uint8_t val, void *addr)
{
*(volatile uint8_t *) addr = val;
sync_primitive();
}
void mmio_writew(uint16_t val, void *addr)
{
*(volatile uint16_t *) addr = val;
sync_primitive();
}
void mmio_writel(uint32_t val, void *addr)
{
*(volatile uint32_t *) addr = val;
sync_primitive();
}
uint8_t mmio_readb(const void *addr)
{
return *(volatile const uint8_t *) addr;
}
uint16_t mmio_readw(const void *addr)
{
return *(volatile const uint16_t *) addr;
}
uint32_t mmio_readl(const void *addr)
{
return *(volatile const uint32_t *) addr;
}
void mmio_readn(const void *addr, uint8_t *buf, size_t len)
{
memcpy(buf, addr, len);
return;
}
void mmio_le_writeb(uint8_t val, void *addr)
{
mmio_writeb(cpu_to_le8(val), addr);
}
void mmio_le_writew(uint16_t val, void *addr)
{
mmio_writew(cpu_to_le16(val), addr);
}
void mmio_le_writel(uint32_t val, void *addr)
{
mmio_writel(cpu_to_le32(val), addr);
}
uint8_t mmio_le_readb(const void *addr)
{
return le_to_cpu8(mmio_readb(addr));
}
uint16_t mmio_le_readw(const void *addr)
{
return le_to_cpu16(mmio_readw(addr));
}
uint32_t mmio_le_readl(const void *addr)
{
return le_to_cpu32(mmio_readl(addr));
}
enum mmio_write_type {
mmio_write_type_b,
mmio_write_type_w,
mmio_write_type_l,
};
struct undo_mmio_write_data {
void *addr;
int reg;
enum mmio_write_type type;
union {
uint8_t bdata;
uint16_t wdata;
uint32_t ldata;
};
};
static int undo_mmio_write(void *p)
{
struct undo_mmio_write_data *data = p;
msg_pdbg("Restoring MMIO space at %p\n", data->addr);
switch (data->type) {
case mmio_write_type_b:
mmio_writeb(data->bdata, data->addr);
break;
case mmio_write_type_w:
mmio_writew(data->wdata, data->addr);
break;
case mmio_write_type_l:
mmio_writel(data->ldata, data->addr);
break;
}
/* p was allocated in register_undo_mmio_write. */
free(p);
return 0;
}
#define register_undo_mmio_write(a, c) \
{ \
struct undo_mmio_write_data *undo_mmio_write_data; \
undo_mmio_write_data = malloc(sizeof(*undo_mmio_write_data)); \
if (!undo_mmio_write_data) { \
msg_gerr("Out of memory!\n"); \
exit(1); \
} \
undo_mmio_write_data->addr = a; \
undo_mmio_write_data->type = mmio_write_type_##c; \
undo_mmio_write_data->c##data = mmio_read##c(a); \
register_shutdown(undo_mmio_write, undo_mmio_write_data); \
}
#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b)
#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w)
#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l)
void rmmio_writeb(uint8_t val, void *addr)
{
register_undo_mmio_writeb(addr);
mmio_writeb(val, addr);
}
void rmmio_writew(uint16_t val, void *addr)
{
register_undo_mmio_writew(addr);
mmio_writew(val, addr);
}
void rmmio_writel(uint32_t val, void *addr)
{
register_undo_mmio_writel(addr);
mmio_writel(val, addr);
}
void rmmio_le_writeb(uint8_t val, void *addr)
{
register_undo_mmio_writeb(addr);
mmio_le_writeb(val, addr);
}
void rmmio_le_writew(uint16_t val, void *addr)
{
register_undo_mmio_writew(addr);
mmio_le_writew(val, addr);
}
void rmmio_le_writel(uint32_t val, void *addr)
{
register_undo_mmio_writel(addr);
mmio_le_writel(val, addr);
}
void rmmio_valb(void *addr)
{
register_undo_mmio_writeb(addr);
}
void rmmio_valw(void *addr)
{
register_undo_mmio_writew(addr);
}
void rmmio_vall(void *addr)
{
register_undo_mmio_writel(addr);
}