mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-26 22:52:34 +02:00

Corresponding to flashrom svn r1602. Signed-off-by: Stefan Tauner <stefan.tauner@alumni.tuwien.ac.at> Acked-by: Stefan Tauner <stefan.tauner@alumni.tuwien.ac.at>
1243 lines
32 KiB
C
1243 lines
32 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
|
|
* Copyright (C) 2008 coresystems GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/*
|
|
* Contains the common SPI chip driver functions
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include "flash.h"
|
|
#include "flashchips.h"
|
|
#include "chipdrivers.h"
|
|
#include "programmer.h"
|
|
#include "spi.h"
|
|
|
|
static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes)
|
|
{
|
|
static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
|
|
int ret;
|
|
int i;
|
|
|
|
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
|
|
if (ret)
|
|
return ret;
|
|
msg_cspew("RDID returned");
|
|
for (i = 0; i < bytes; i++)
|
|
msg_cspew(" 0x%02x", readarr[i]);
|
|
msg_cspew(". ");
|
|
return 0;
|
|
}
|
|
|
|
static int spi_rems(struct flashctx *flash, unsigned char *readarr)
|
|
{
|
|
unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
|
|
uint32_t readaddr;
|
|
int ret;
|
|
|
|
ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd,
|
|
readarr);
|
|
if (ret == SPI_INVALID_ADDRESS) {
|
|
/* Find the lowest even address allowed for reads. */
|
|
readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
|
|
cmd[1] = (readaddr >> 16) & 0xff,
|
|
cmd[2] = (readaddr >> 8) & 0xff,
|
|
cmd[3] = (readaddr >> 0) & 0xff,
|
|
ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE,
|
|
cmd, readarr);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]);
|
|
return 0;
|
|
}
|
|
|
|
static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes)
|
|
{
|
|
unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
|
|
uint32_t readaddr;
|
|
int ret;
|
|
int i;
|
|
|
|
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
|
|
if (ret == SPI_INVALID_ADDRESS) {
|
|
/* Find the lowest even address allowed for reads. */
|
|
readaddr = (spi_get_valid_read_addr(flash) + 1) & ~1;
|
|
cmd[1] = (readaddr >> 16) & 0xff,
|
|
cmd[2] = (readaddr >> 8) & 0xff,
|
|
cmd[3] = (readaddr >> 0) & 0xff,
|
|
ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
msg_cspew("RES returned");
|
|
for (i = 0; i < bytes; i++)
|
|
msg_cspew(" 0x%02x", readarr[i]);
|
|
msg_cspew(". ");
|
|
return 0;
|
|
}
|
|
|
|
int spi_write_enable(struct flashctx *flash)
|
|
{
|
|
static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
|
|
int result;
|
|
|
|
/* Send WREN (Write Enable) */
|
|
result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
|
|
|
|
if (result)
|
|
msg_cerr("%s failed\n", __func__);
|
|
|
|
return result;
|
|
}
|
|
|
|
int spi_write_disable(struct flashctx *flash)
|
|
{
|
|
static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
|
|
|
|
/* Send WRDI (Write Disable) */
|
|
return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
|
|
}
|
|
|
|
static int probe_spi_rdid_generic(struct flashctx *flash, int bytes)
|
|
{
|
|
const struct flashchip *chip = flash->chip;
|
|
unsigned char readarr[4];
|
|
uint32_t id1;
|
|
uint32_t id2;
|
|
|
|
if (spi_rdid(flash, readarr, bytes)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!oddparity(readarr[0]))
|
|
msg_cdbg("RDID byte 0 parity violation. ");
|
|
|
|
/* Check if this is a continuation vendor ID.
|
|
* FIXME: Handle continuation device IDs.
|
|
*/
|
|
if (readarr[0] == 0x7f) {
|
|
if (!oddparity(readarr[1]))
|
|
msg_cdbg("RDID byte 1 parity violation. ");
|
|
id1 = (readarr[0] << 8) | readarr[1];
|
|
id2 = readarr[2];
|
|
if (bytes > 3) {
|
|
id2 <<= 8;
|
|
id2 |= readarr[3];
|
|
}
|
|
} else {
|
|
id1 = readarr[0];
|
|
id2 = (readarr[1] << 8) | readarr[2];
|
|
}
|
|
|
|
msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
|
|
|
|
if (id1 == chip->manufacture_id && id2 == chip->model_id) {
|
|
/* Print the status register to tell the
|
|
* user about possible write protection.
|
|
*/
|
|
spi_prettyprint_status_register(flash);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Test if this is a pure vendor match. */
|
|
if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
|
|
return 1;
|
|
|
|
/* Test if there is any vendor ID. */
|
|
if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int probe_spi_rdid(struct flashctx *flash)
|
|
{
|
|
return probe_spi_rdid_generic(flash, 3);
|
|
}
|
|
|
|
int probe_spi_rdid4(struct flashctx *flash)
|
|
{
|
|
/* Some SPI controllers do not support commands with writecnt=1 and
|
|
* readcnt=4.
|
|
*/
|
|
switch (flash->pgm->spi.type) {
|
|
#if CONFIG_INTERNAL == 1
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
case SPI_CONTROLLER_IT87XX:
|
|
case SPI_CONTROLLER_WBSIO:
|
|
msg_cinfo("4 byte RDID not supported on this SPI controller\n");
|
|
return 0;
|
|
break;
|
|
#endif
|
|
#endif
|
|
default:
|
|
return probe_spi_rdid_generic(flash, 4);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int probe_spi_rems(struct flashctx *flash)
|
|
{
|
|
const struct flashchip *chip = flash->chip;
|
|
unsigned char readarr[JEDEC_REMS_INSIZE];
|
|
uint32_t id1, id2;
|
|
|
|
if (spi_rems(flash, readarr)) {
|
|
return 0;
|
|
}
|
|
|
|
id1 = readarr[0];
|
|
id2 = readarr[1];
|
|
|
|
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
|
|
|
|
if (id1 == chip->manufacture_id && id2 == chip->model_id) {
|
|
/* Print the status register to tell the
|
|
* user about possible write protection.
|
|
*/
|
|
spi_prettyprint_status_register(flash);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Test if this is a pure vendor match. */
|
|
if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
|
|
return 1;
|
|
|
|
/* Test if there is any vendor ID. */
|
|
if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int probe_spi_res1(struct flashctx *flash)
|
|
{
|
|
static const unsigned char allff[] = {0xff, 0xff, 0xff};
|
|
static const unsigned char all00[] = {0x00, 0x00, 0x00};
|
|
unsigned char readarr[3];
|
|
uint32_t id2;
|
|
|
|
/* We only want one-byte RES if RDID and REMS are unusable. */
|
|
|
|
/* Check if RDID is usable and does not return 0xff 0xff 0xff or
|
|
* 0x00 0x00 0x00. In that case, RES is pointless.
|
|
*/
|
|
if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) &&
|
|
memcmp(readarr, all00, 3)) {
|
|
msg_cdbg("Ignoring RES in favour of RDID.\n");
|
|
return 0;
|
|
}
|
|
/* Check if REMS is usable and does not return 0xff 0xff or
|
|
* 0x00 0x00. In that case, RES is pointless.
|
|
*/
|
|
if (!spi_rems(flash, readarr) &&
|
|
memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
|
|
memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
|
|
msg_cdbg("Ignoring RES in favour of REMS.\n");
|
|
return 0;
|
|
}
|
|
|
|
if (spi_res(flash, readarr, 1)) {
|
|
return 0;
|
|
}
|
|
|
|
id2 = readarr[0];
|
|
|
|
msg_cdbg("%s: id 0x%x\n", __func__, id2);
|
|
|
|
if (id2 != flash->chip->model_id)
|
|
return 0;
|
|
|
|
/* Print the status register to tell the
|
|
* user about possible write protection.
|
|
*/
|
|
spi_prettyprint_status_register(flash);
|
|
return 1;
|
|
}
|
|
|
|
int probe_spi_res2(struct flashctx *flash)
|
|
{
|
|
unsigned char readarr[2];
|
|
uint32_t id1, id2;
|
|
|
|
if (spi_res(flash, readarr, 2)) {
|
|
return 0;
|
|
}
|
|
|
|
id1 = readarr[0];
|
|
id2 = readarr[1];
|
|
|
|
msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
|
|
|
|
if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
|
|
return 0;
|
|
|
|
/* Print the status register to tell the
|
|
* user about possible write protection.
|
|
*/
|
|
spi_prettyprint_status_register(flash);
|
|
return 1;
|
|
}
|
|
|
|
uint8_t spi_read_status_register(struct flashctx *flash)
|
|
{
|
|
static const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR };
|
|
/* FIXME: No workarounds for driver/hardware bugs in generic code. */
|
|
unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
|
|
int ret;
|
|
|
|
/* Read Status Register */
|
|
ret = spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd,
|
|
readarr);
|
|
if (ret)
|
|
msg_cerr("RDSR failed!\n");
|
|
|
|
return readarr[0];
|
|
}
|
|
|
|
/* Common highest bit: Status Register Write Disable (SRWD). */
|
|
void spi_prettyprint_status_register_srwd(uint8_t status)
|
|
{
|
|
msg_cdbg("Chip status register: Status Register Write Disable (SRWD) is %sset\n",
|
|
(status & (1 << 7)) ? "" : "not ");
|
|
}
|
|
|
|
void spi_prettyprint_status_register_welwip(uint8_t status)
|
|
{
|
|
msg_cdbg("Chip status register: Write Enable Latch (WEL) is "
|
|
"%sset\n", (status & (1 << 1)) ? "" : "not ");
|
|
msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is "
|
|
"%sset\n", (status & (1 << 0)) ? "" : "not ");
|
|
}
|
|
|
|
/* Prettyprint the status register. Common definitions. */
|
|
void spi_prettyprint_status_register_bp(uint8_t status, int bp)
|
|
{
|
|
switch (bp) {
|
|
/* Fall through. */
|
|
case 4:
|
|
msg_cdbg("Chip status register: Block Protect 4 (BP4) "
|
|
"is %sset\n", (status & (1 << 5)) ? "" : "not ");
|
|
case 3:
|
|
msg_cdbg("Chip status register: Block Protect 3 (BP3) "
|
|
"is %sset\n", (status & (1 << 5)) ? "" : "not ");
|
|
case 2:
|
|
msg_cdbg("Chip status register: Block Protect 2 (BP2) "
|
|
"is %sset\n", (status & (1 << 4)) ? "" : "not ");
|
|
case 1:
|
|
msg_cdbg("Chip status register: Block Protect 1 (BP1) "
|
|
"is %sset\n", (status & (1 << 3)) ? "" : "not ");
|
|
case 0:
|
|
msg_cdbg("Chip status register: Block Protect 0 (BP0) "
|
|
"is %sset\n", (status & (1 << 2)) ? "" : "not ");
|
|
}
|
|
}
|
|
|
|
/* Prettyprint the status register. Unnamed bits. */
|
|
void spi_prettyprint_status_register_bit(uint8_t status, int bit)
|
|
{
|
|
msg_cdbg("Chip status register: Bit %i "
|
|
"is %sset\n", bit, (status & (1 << bit)) ? "" : "not ");
|
|
}
|
|
|
|
static void spi_prettyprint_status_register_common(uint8_t status)
|
|
{
|
|
spi_prettyprint_status_register_bp(status, 3);
|
|
spi_prettyprint_status_register_welwip(status);
|
|
}
|
|
|
|
/* Prettyprint the status register. Works for
|
|
* ST M25P series
|
|
* MX MX25L series
|
|
*/
|
|
void spi_prettyprint_status_register_st_m25p(uint8_t status)
|
|
{
|
|
spi_prettyprint_status_register_srwd(status);
|
|
spi_prettyprint_status_register_bit(status, 6);
|
|
spi_prettyprint_status_register_common(status);
|
|
}
|
|
|
|
void spi_prettyprint_status_register_sst25(uint8_t status)
|
|
{
|
|
msg_cdbg("Chip status register: Block Protect Write Disable "
|
|
"(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not ");
|
|
msg_cdbg("Chip status register: Auto Address Increment Programming "
|
|
"(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not ");
|
|
spi_prettyprint_status_register_common(status);
|
|
}
|
|
|
|
/* Prettyprint the status register. Works for
|
|
* SST 25VF016
|
|
*/
|
|
void spi_prettyprint_status_register_sst25vf016(uint8_t status)
|
|
{
|
|
static const char *const bpt[] = {
|
|
"none",
|
|
"1F0000H-1FFFFFH",
|
|
"1E0000H-1FFFFFH",
|
|
"1C0000H-1FFFFFH",
|
|
"180000H-1FFFFFH",
|
|
"100000H-1FFFFFH",
|
|
"all", "all"
|
|
};
|
|
spi_prettyprint_status_register_sst25(status);
|
|
msg_cdbg("Resulting block protection : %s\n",
|
|
bpt[(status & 0x1c) >> 2]);
|
|
}
|
|
|
|
void spi_prettyprint_status_register_sst25vf040b(uint8_t status)
|
|
{
|
|
static const char *const bpt[] = {
|
|
"none",
|
|
"0x70000-0x7ffff",
|
|
"0x60000-0x7ffff",
|
|
"0x40000-0x7ffff",
|
|
"all blocks", "all blocks", "all blocks", "all blocks"
|
|
};
|
|
spi_prettyprint_status_register_sst25(status);
|
|
msg_cdbg("Resulting block protection : %s\n",
|
|
bpt[(status & 0x1c) >> 2]);
|
|
}
|
|
|
|
int spi_prettyprint_status_register(struct flashctx *flash)
|
|
{
|
|
const struct flashchip *chip = flash->chip;
|
|
uint8_t status;
|
|
|
|
status = spi_read_status_register(flash);
|
|
msg_cdbg("Chip status register is %02x\n", status);
|
|
switch (chip->manufacture_id) {
|
|
case ST_ID:
|
|
if (((chip->model_id & 0xff00) == 0x2000) ||
|
|
((chip->model_id & 0xff00) == 0x2500))
|
|
spi_prettyprint_status_register_st_m25p(status);
|
|
break;
|
|
case MACRONIX_ID:
|
|
if ((chip->model_id & 0xff00) == 0x2000)
|
|
spi_prettyprint_status_register_st_m25p(status);
|
|
break;
|
|
case SST_ID:
|
|
switch (chip->model_id) {
|
|
case 0x2541:
|
|
spi_prettyprint_status_register_sst25vf016(status);
|
|
break;
|
|
case 0x8d:
|
|
case 0x258d:
|
|
spi_prettyprint_status_register_sst25vf040b(status);
|
|
break;
|
|
default:
|
|
spi_prettyprint_status_register_sst25(status);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int spi_chip_erase_60(struct flashctx *flash)
|
|
{
|
|
int result;
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_CE_60_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_CE_60 },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution\n",
|
|
__func__);
|
|
return result;
|
|
}
|
|
/* Wait until the Write-In-Progress bit is cleared.
|
|
* This usually takes 1-85 s, so wait in 1 s steps.
|
|
*/
|
|
/* FIXME: We assume spi_read_status_register will never fail. */
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(1000 * 1000);
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
int spi_chip_erase_62(struct flashctx *flash)
|
|
{
|
|
int result;
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_CE_62_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_CE_62 },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution\n",
|
|
__func__);
|
|
return result;
|
|
}
|
|
/* Wait until the Write-In-Progress bit is cleared.
|
|
* This usually takes 2-5 s, so wait in 100 ms steps.
|
|
*/
|
|
/* FIXME: We assume spi_read_status_register will never fail. */
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(100 * 1000);
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
int spi_chip_erase_c7(struct flashctx *flash)
|
|
{
|
|
int result;
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_CE_C7_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_CE_C7 },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution\n", __func__);
|
|
return result;
|
|
}
|
|
/* Wait until the Write-In-Progress bit is cleared.
|
|
* This usually takes 1-85 s, so wait in 1 s steps.
|
|
*/
|
|
/* FIXME: We assume spi_read_status_register will never fail. */
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(1000 * 1000);
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
int spi_block_erase_52(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
int result;
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_BE_52_OUTSIZE,
|
|
.writearr = (const unsigned char[]){
|
|
JEDEC_BE_52,
|
|
(addr >> 16) & 0xff,
|
|
(addr >> 8) & 0xff,
|
|
(addr & 0xff)
|
|
},
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution at address 0x%x\n",
|
|
__func__, addr);
|
|
return result;
|
|
}
|
|
/* Wait until the Write-In-Progress bit is cleared.
|
|
* This usually takes 100-4000 ms, so wait in 100 ms steps.
|
|
*/
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(100 * 1000);
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
/* Block size is usually
|
|
* 64k for Macronix
|
|
* 32k for SST
|
|
* 4-32k non-uniform for EON
|
|
*/
|
|
int spi_block_erase_d8(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
int result;
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_BE_D8_OUTSIZE,
|
|
.writearr = (const unsigned char[]){
|
|
JEDEC_BE_D8,
|
|
(addr >> 16) & 0xff,
|
|
(addr >> 8) & 0xff,
|
|
(addr & 0xff)
|
|
},
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution at address 0x%x\n",
|
|
__func__, addr);
|
|
return result;
|
|
}
|
|
/* Wait until the Write-In-Progress bit is cleared.
|
|
* This usually takes 100-4000 ms, so wait in 100 ms steps.
|
|
*/
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(100 * 1000);
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
/* Block size is usually
|
|
* 4k for PMC
|
|
*/
|
|
int spi_block_erase_d7(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
int result;
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_BE_D7_OUTSIZE,
|
|
.writearr = (const unsigned char[]){
|
|
JEDEC_BE_D7,
|
|
(addr >> 16) & 0xff,
|
|
(addr >> 8) & 0xff,
|
|
(addr & 0xff)
|
|
},
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution at address 0x%x\n",
|
|
__func__, addr);
|
|
return result;
|
|
}
|
|
/* Wait until the Write-In-Progress bit is cleared.
|
|
* This usually takes 100-4000 ms, so wait in 100 ms steps.
|
|
*/
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(100 * 1000);
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
/* Sector size is usually 4k, though Macronix eliteflash has 64k */
|
|
int spi_block_erase_20(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
int result;
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_SE_OUTSIZE,
|
|
.writearr = (const unsigned char[]){
|
|
JEDEC_SE,
|
|
(addr >> 16) & 0xff,
|
|
(addr >> 8) & 0xff,
|
|
(addr & 0xff)
|
|
},
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution at address 0x%x\n",
|
|
__func__, addr);
|
|
return result;
|
|
}
|
|
/* Wait until the Write-In-Progress bit is cleared.
|
|
* This usually takes 15-800 ms, so wait in 10 ms steps.
|
|
*/
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(10 * 1000);
|
|
/* FIXME: Check the status register for errors. */
|
|
return 0;
|
|
}
|
|
|
|
int spi_block_erase_60(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
|
|
msg_cerr("%s called with incorrect arguments\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
return spi_chip_erase_60(flash);
|
|
}
|
|
|
|
int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
|
|
{
|
|
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
|
|
msg_cerr("%s called with incorrect arguments\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
return spi_chip_erase_62(flash);
|
|
}
|
|
|
|
int spi_block_erase_c7(struct flashctx *flash, unsigned int addr,
|
|
unsigned int blocklen)
|
|
{
|
|
if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
|
|
msg_cerr("%s called with incorrect arguments\n",
|
|
__func__);
|
|
return -1;
|
|
}
|
|
return spi_chip_erase_c7(flash);
|
|
}
|
|
|
|
erasefunc_t *spi_get_erasefn_from_opcode(uint8_t opcode)
|
|
{
|
|
switch(opcode){
|
|
case 0xff:
|
|
case 0x00:
|
|
/* Not specified, assuming "not supported". */
|
|
return NULL;
|
|
case 0x20:
|
|
return &spi_block_erase_20;
|
|
case 0x52:
|
|
return &spi_block_erase_52;
|
|
case 0x60:
|
|
return &spi_block_erase_60;
|
|
case 0xc7:
|
|
return &spi_block_erase_c7;
|
|
case 0xd7:
|
|
return &spi_block_erase_d7;
|
|
case 0xd8:
|
|
return &spi_block_erase_d8;
|
|
default:
|
|
msg_cinfo("%s: unknown erase opcode (0x%02x). Please report "
|
|
"this at flashrom@flashrom.org\n", __func__, opcode);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
int spi_write_status_enable(struct flashctx *flash)
|
|
{
|
|
static const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR };
|
|
int result;
|
|
|
|
/* Send EWSR (Enable Write Status Register). */
|
|
result = spi_send_command(flash, sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL);
|
|
|
|
if (result)
|
|
msg_cerr("%s failed\n", __func__);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* This is according the SST25VF016 datasheet, who knows it is more
|
|
* generic that this...
|
|
*/
|
|
static int spi_write_status_register_flag(struct flashctx *flash, int status, const unsigned char enable_opcode)
|
|
{
|
|
int result;
|
|
int i = 0;
|
|
/*
|
|
* WRSR requires either EWSR or WREN depending on chip type.
|
|
* The code below relies on the fact hat EWSR and WREN have the same
|
|
* INSIZE and OUTSIZE.
|
|
*/
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ enable_opcode },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_WRSR_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution\n", __func__);
|
|
/* No point in waiting for the command to complete if execution
|
|
* failed.
|
|
*/
|
|
return result;
|
|
}
|
|
/* WRSR performs a self-timed erase before the changes take effect.
|
|
* This may take 50-85 ms in most cases, and some chips apparently
|
|
* allow running RDSR only once. Therefore pick an initial delay of
|
|
* 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
|
|
*/
|
|
programmer_delay(100 * 1000);
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP) {
|
|
if (++i > 490) {
|
|
msg_cerr("Error: WIP bit after WRSR never cleared\n");
|
|
return TIMEOUT_ERROR;
|
|
}
|
|
programmer_delay(10 * 1000);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int spi_write_status_register(struct flashctx *flash, int status)
|
|
{
|
|
int feature_bits = flash->chip->feature_bits;
|
|
int ret = 1;
|
|
|
|
if (!(feature_bits & (FEATURE_WRSR_WREN | FEATURE_WRSR_EWSR))) {
|
|
msg_cdbg("Missing status register write definition, assuming "
|
|
"EWSR is needed\n");
|
|
feature_bits |= FEATURE_WRSR_EWSR;
|
|
}
|
|
if (feature_bits & FEATURE_WRSR_WREN)
|
|
ret = spi_write_status_register_flag(flash, status, JEDEC_WREN);
|
|
if (ret && (feature_bits & FEATURE_WRSR_EWSR))
|
|
ret = spi_write_status_register_flag(flash, status, JEDEC_EWSR);
|
|
return ret;
|
|
}
|
|
|
|
int spi_byte_program(struct flashctx *flash, unsigned int addr,
|
|
uint8_t databyte)
|
|
{
|
|
int result;
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE,
|
|
.writearr = (const unsigned char[]){
|
|
JEDEC_BYTE_PROGRAM,
|
|
(addr >> 16) & 0xff,
|
|
(addr >> 8) & 0xff,
|
|
(addr & 0xff),
|
|
databyte
|
|
},
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution at address 0x%x\n",
|
|
__func__, addr);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int spi_nbyte_program(struct flashctx *flash, unsigned int addr, uint8_t *bytes,
|
|
unsigned int len)
|
|
{
|
|
int result;
|
|
/* FIXME: Switch to malloc based on len unless that kills speed. */
|
|
unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
|
|
JEDEC_BYTE_PROGRAM,
|
|
(addr >> 16) & 0xff,
|
|
(addr >> 8) & 0xff,
|
|
(addr >> 0) & 0xff,
|
|
};
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len,
|
|
.writearr = cmd,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
if (!len) {
|
|
msg_cerr("%s called for zero-length write\n", __func__);
|
|
return 1;
|
|
}
|
|
if (len > 256) {
|
|
msg_cerr("%s called for too long a write\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
memcpy(&cmd[4], bytes, len);
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during command execution at address 0x%x\n",
|
|
__func__, addr);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* A generic brute-force block protection disable works like this:
|
|
* Write 0x00 to the status register. Check if any locks are still set (that
|
|
* part is chip specific). Repeat once.
|
|
*/
|
|
int spi_disable_blockprotect(struct flashctx *flash)
|
|
{
|
|
uint8_t status;
|
|
int result;
|
|
|
|
status = spi_read_status_register(flash);
|
|
/* If block protection is disabled, stop here. */
|
|
if ((status & 0x3c) == 0)
|
|
return 0;
|
|
|
|
msg_cdbg("Some block protection in effect, disabling... ");
|
|
result = spi_write_status_register(flash, status & ~0x3c);
|
|
if (result) {
|
|
msg_cerr("spi_write_status_register failed.\n");
|
|
return result;
|
|
}
|
|
status = spi_read_status_register(flash);
|
|
if ((status & 0x3c) != 0) {
|
|
msg_cerr("Block protection could not be disabled!\n");
|
|
return 1;
|
|
}
|
|
msg_cdbg("done.\n");
|
|
return 0;
|
|
}
|
|
|
|
int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes,
|
|
unsigned int len)
|
|
{
|
|
const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
|
|
JEDEC_READ,
|
|
(address >> 16) & 0xff,
|
|
(address >> 8) & 0xff,
|
|
(address >> 0) & 0xff,
|
|
};
|
|
|
|
/* Send Read */
|
|
return spi_send_command(flash, sizeof(cmd), len, cmd, bytes);
|
|
}
|
|
|
|
/*
|
|
* Read a part of the flash chip.
|
|
* FIXME: Use the chunk code from Michael Karcher instead.
|
|
* Each page is read separately in chunks with a maximum size of chunksize.
|
|
*/
|
|
int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
|
|
unsigned int len, unsigned int chunksize)
|
|
{
|
|
int rc = 0;
|
|
unsigned int i, j, starthere, lenhere, toread;
|
|
unsigned int page_size = flash->chip->page_size;
|
|
|
|
/* Warning: This loop has a very unusual condition and body.
|
|
* The loop needs to go through each page with at least one affected
|
|
* byte. The lowest page number is (start / page_size) since that
|
|
* division rounds down. The highest page number we want is the page
|
|
* where the last byte of the range lives. That last byte has the
|
|
* address (start + len - 1), thus the highest page number is
|
|
* (start + len - 1) / page_size. Since we want to include that last
|
|
* page as well, the loop condition uses <=.
|
|
*/
|
|
for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
|
|
/* Byte position of the first byte in the range in this page. */
|
|
/* starthere is an offset to the base address of the chip. */
|
|
starthere = max(start, i * page_size);
|
|
/* Length of bytes in the range in this page. */
|
|
lenhere = min(start + len, (i + 1) * page_size) - starthere;
|
|
for (j = 0; j < lenhere; j += chunksize) {
|
|
toread = min(chunksize, lenhere - j);
|
|
rc = spi_nbyte_read(flash, starthere + j, buf + starthere - start + j, toread);
|
|
if (rc)
|
|
break;
|
|
}
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Write a part of the flash chip.
|
|
* FIXME: Use the chunk code from Michael Karcher instead.
|
|
* Each page is written separately in chunks with a maximum size of chunksize.
|
|
*/
|
|
int spi_write_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
|
|
unsigned int len, unsigned int chunksize)
|
|
{
|
|
int rc = 0;
|
|
unsigned int i, j, starthere, lenhere, towrite;
|
|
/* FIXME: page_size is the wrong variable. We need max_writechunk_size
|
|
* in struct flashctx to do this properly. All chips using
|
|
* spi_chip_write_256 have page_size set to max_writechunk_size, so
|
|
* we're OK for now.
|
|
*/
|
|
unsigned int page_size = flash->chip->page_size;
|
|
|
|
/* Warning: This loop has a very unusual condition and body.
|
|
* The loop needs to go through each page with at least one affected
|
|
* byte. The lowest page number is (start / page_size) since that
|
|
* division rounds down. The highest page number we want is the page
|
|
* where the last byte of the range lives. That last byte has the
|
|
* address (start + len - 1), thus the highest page number is
|
|
* (start + len - 1) / page_size. Since we want to include that last
|
|
* page as well, the loop condition uses <=.
|
|
*/
|
|
for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
|
|
/* Byte position of the first byte in the range in this page. */
|
|
/* starthere is an offset to the base address of the chip. */
|
|
starthere = max(start, i * page_size);
|
|
/* Length of bytes in the range in this page. */
|
|
lenhere = min(start + len, (i + 1) * page_size) - starthere;
|
|
for (j = 0; j < lenhere; j += chunksize) {
|
|
towrite = min(chunksize, lenhere - j);
|
|
rc = spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite);
|
|
if (rc)
|
|
break;
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(10);
|
|
}
|
|
if (rc)
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Program chip using byte programming. (SLOW!)
|
|
* This is for chips which can only handle one byte writes
|
|
* and for chips where memory mapped programming is impossible
|
|
* (e.g. due to size constraints in IT87* for over 512 kB)
|
|
*/
|
|
/* real chunksize is 1, logical chunksize is 1 */
|
|
int spi_chip_write_1(struct flashctx *flash, uint8_t *buf, unsigned int start,
|
|
unsigned int len)
|
|
{
|
|
unsigned int i;
|
|
int result = 0;
|
|
|
|
for (i = start; i < start + len; i++) {
|
|
result = spi_byte_program(flash, i, buf[i - start]);
|
|
if (result)
|
|
return 1;
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(10);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int default_spi_write_aai(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
|
|
{
|
|
uint32_t pos = start;
|
|
int result;
|
|
unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
|
|
JEDEC_AAI_WORD_PROGRAM,
|
|
};
|
|
struct spi_command cmds[] = {
|
|
{
|
|
.writecnt = JEDEC_WREN_OUTSIZE,
|
|
.writearr = (const unsigned char[]){ JEDEC_WREN },
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = JEDEC_AAI_WORD_PROGRAM_OUTSIZE,
|
|
.writearr = (const unsigned char[]){
|
|
JEDEC_AAI_WORD_PROGRAM,
|
|
(start >> 16) & 0xff,
|
|
(start >> 8) & 0xff,
|
|
(start & 0xff),
|
|
buf[0],
|
|
buf[1]
|
|
},
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}, {
|
|
.writecnt = 0,
|
|
.writearr = NULL,
|
|
.readcnt = 0,
|
|
.readarr = NULL,
|
|
}};
|
|
|
|
switch (flash->pgm->spi.type) {
|
|
#if CONFIG_INTERNAL == 1
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
case SPI_CONTROLLER_IT87XX:
|
|
case SPI_CONTROLLER_WBSIO:
|
|
msg_perr("%s: impossible with this SPI controller,"
|
|
" degrading to byte program\n", __func__);
|
|
return spi_chip_write_1(flash, buf, start, len);
|
|
#endif
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* The even start address and even length requirements can be either
|
|
* honored outside this function, or we can call spi_byte_program
|
|
* for the first and/or last byte and use AAI for the rest.
|
|
* FIXME: Move this to generic code.
|
|
*/
|
|
/* The data sheet requires a start address with the low bit cleared. */
|
|
if (start % 2) {
|
|
msg_cerr("%s: start address not even! Please report a bug at "
|
|
"flashrom@flashrom.org\n", __func__);
|
|
if (spi_chip_write_1(flash, buf, start, start % 2))
|
|
return SPI_GENERIC_ERROR;
|
|
pos += start % 2;
|
|
cmds[1].writearr = (const unsigned char[]){
|
|
JEDEC_AAI_WORD_PROGRAM,
|
|
(pos >> 16) & 0xff,
|
|
(pos >> 8) & 0xff,
|
|
(pos & 0xff),
|
|
buf[pos - start],
|
|
buf[pos - start + 1]
|
|
};
|
|
/* Do not return an error for now. */
|
|
//return SPI_GENERIC_ERROR;
|
|
}
|
|
/* The data sheet requires total AAI write length to be even. */
|
|
if (len % 2) {
|
|
msg_cerr("%s: total write length not even! Please report a "
|
|
"bug at flashrom@flashrom.org\n", __func__);
|
|
/* Do not return an error for now. */
|
|
//return SPI_GENERIC_ERROR;
|
|
}
|
|
|
|
|
|
result = spi_send_multicommand(flash, cmds);
|
|
if (result) {
|
|
msg_cerr("%s failed during start command execution\n",
|
|
__func__);
|
|
/* FIXME: Should we send WRDI here as well to make sure the chip
|
|
* is not in AAI mode?
|
|
*/
|
|
return result;
|
|
}
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(10);
|
|
|
|
/* We already wrote 2 bytes in the multicommand step. */
|
|
pos += 2;
|
|
|
|
/* Are there at least two more bytes to write? */
|
|
while (pos < start + len - 1) {
|
|
cmd[1] = buf[pos++ - start];
|
|
cmd[2] = buf[pos++ - start];
|
|
spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0,
|
|
cmd, NULL);
|
|
while (spi_read_status_register(flash) & SPI_SR_WIP)
|
|
programmer_delay(10);
|
|
}
|
|
|
|
/* Use WRDI to exit AAI mode. This needs to be done before issuing any
|
|
* other non-AAI command.
|
|
*/
|
|
spi_write_disable(flash);
|
|
|
|
/* Write remaining byte (if any). */
|
|
if (pos < start + len) {
|
|
if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
|
|
return SPI_GENERIC_ERROR;
|
|
pos += pos % 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|