mirror of
https://review.coreboot.org/flashrom.git
synced 2025-04-27 07:02:34 +02:00

This "chunk size" limits the amount of data that is passed to libusb at once. If we had exceeded the chunk size, libftdi would have split the data into individual, synchronous bulk transfers. But the chunk size was actually chosen to avoid this. So without any known effect, setting the chunk size is useless. Drop it. Change-Id: I779e24dc3f3379a98ddce02c3765062ac3241884 Signed-off-by: Nico Huber <nico.h@gmx.de> Reviewed-on: https://review.coreboot.org/c/flashrom/+/55683 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Angel Pons <th3fanbus@gmail.com> Reviewed-by: Edward O'Callaghan <quasisec@chromium.org>
734 lines
21 KiB
C
734 lines
21 KiB
C
/*
|
|
* This file is part of the flashrom project.
|
|
*
|
|
* Copyright (C) 2009 Paul Fox <pgf@laptop.org>
|
|
* Copyright (C) 2009, 2010 Carl-Daniel Hailfinger
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#if CONFIG_FT2232_SPI == 1
|
|
|
|
#include <stdio.h>
|
|
#include <strings.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#include "flash.h"
|
|
#include "programmer.h"
|
|
#include "spi.h"
|
|
#include <ftdi.h>
|
|
|
|
/* This is not defined in libftdi.h <0.20 (c7e4c09e68cfa6f5e112334aa1b3bb23401c8dc7 to be exact).
|
|
* Some tests indicate that this is the only change that it is needed to support the FT232H in flashrom. */
|
|
#if !defined(HAVE_FT232H)
|
|
#define TYPE_232H 6
|
|
#endif
|
|
|
|
/* Please keep sorted by vendor ID, then device ID. */
|
|
|
|
#define FTDI_VID 0x0403
|
|
#define FTDI_FT2232H_PID 0x6010
|
|
#define FTDI_FT4232H_PID 0x6011
|
|
#define FTDI_FT232H_PID 0x6014
|
|
#define TIAO_TUMPA_PID 0x8a98
|
|
#define TIAO_TUMPA_LITE_PID 0x8a99
|
|
#define AMONTEC_JTAGKEY_PID 0xCFF8
|
|
|
|
#define GOEPEL_VID 0x096C
|
|
#define GOEPEL_PICOTAP_PID 0x1449
|
|
|
|
#define FIC_VID 0x1457
|
|
#define OPENMOKO_DBGBOARD_PID 0x5118
|
|
|
|
#define OLIMEX_VID 0x15BA
|
|
#define OLIMEX_ARM_OCD_PID 0x0003
|
|
#define OLIMEX_ARM_TINY_PID 0x0004
|
|
#define OLIMEX_ARM_OCD_H_PID 0x002B
|
|
#define OLIMEX_ARM_TINY_H_PID 0x002A
|
|
|
|
#define GOOGLE_VID 0x18D1
|
|
#define GOOGLE_SERVO_PID 0x5001
|
|
#define GOOGLE_SERVO_V2_PID0 0x5002
|
|
#define GOOGLE_SERVO_V2_PID1 0x5003
|
|
|
|
static const struct dev_entry devs_ft2232spi[] = {
|
|
{FTDI_VID, FTDI_FT2232H_PID, OK, "FTDI", "FT2232H"},
|
|
{FTDI_VID, FTDI_FT4232H_PID, OK, "FTDI", "FT4232H"},
|
|
{FTDI_VID, FTDI_FT232H_PID, OK, "FTDI", "FT232H"},
|
|
{FTDI_VID, TIAO_TUMPA_PID, OK, "TIAO", "USB Multi-Protocol Adapter"},
|
|
{FTDI_VID, TIAO_TUMPA_LITE_PID, OK, "TIAO", "USB Multi-Protocol Adapter Lite"},
|
|
{FTDI_VID, AMONTEC_JTAGKEY_PID, OK, "Amontec", "JTAGkey"},
|
|
{GOEPEL_VID, GOEPEL_PICOTAP_PID, OK, "GOEPEL", "PicoTAP"},
|
|
{GOOGLE_VID, GOOGLE_SERVO_PID, OK, "Google", "Servo"},
|
|
{GOOGLE_VID, GOOGLE_SERVO_V2_PID0, OK, "Google", "Servo V2 Legacy"},
|
|
{GOOGLE_VID, GOOGLE_SERVO_V2_PID1, OK, "Google", "Servo V2"},
|
|
{FIC_VID, OPENMOKO_DBGBOARD_PID, OK, "FIC", "OpenMoko Neo1973 Debug board (V2+)"},
|
|
{OLIMEX_VID, OLIMEX_ARM_OCD_PID, OK, "Olimex", "ARM-USB-OCD"},
|
|
{OLIMEX_VID, OLIMEX_ARM_TINY_PID, OK, "Olimex", "ARM-USB-TINY"},
|
|
{OLIMEX_VID, OLIMEX_ARM_OCD_H_PID, OK, "Olimex", "ARM-USB-OCD-H"},
|
|
{OLIMEX_VID, OLIMEX_ARM_TINY_H_PID, OK, "Olimex", "ARM-USB-TINY-H"},
|
|
|
|
{0},
|
|
};
|
|
|
|
#define FTDI_HW_BUFFER_SIZE 4096 /* in bytes */
|
|
|
|
#define DEFAULT_DIVISOR 2
|
|
|
|
#define BITMODE_BITBANG_NORMAL 1
|
|
#define BITMODE_BITBANG_SPI 2
|
|
|
|
/* The variables pinlvl and pindir store the values for the "set data bits low byte" MPSSE command that
|
|
* sets the initial state and the direction of the I/O pins. The pin offsets are as follows:
|
|
* TCK/SK is bit 0.
|
|
* TDI/DO is bit 1.
|
|
* TDO/DI is bit 2.
|
|
* TMS/CS is bit 3.
|
|
* GPIOL0 is bit 4.
|
|
* GPIOL1 is bit 5.
|
|
* GPIOL2 is bit 6.
|
|
* GPIOL3 is bit 7.
|
|
*
|
|
* The pin signal direction bit offsets follow the same order; 0 means that
|
|
* pin at the matching bit index is an input, 1 means pin is an output.
|
|
*
|
|
* The default values (set below in ft2232_spi_init) are used for most devices:
|
|
* value: 0x08 CS=high, DI=low, DO=low, SK=low
|
|
* dir: 0x0b CS=output, DI=input, DO=output, SK=output
|
|
*/
|
|
struct ft2232_data {
|
|
uint8_t pinlvl;
|
|
uint8_t pindir;
|
|
struct ftdi_context ftdic_context;
|
|
};
|
|
|
|
static const char *get_ft2232_devicename(int ft2232_vid, int ft2232_type)
|
|
{
|
|
int i;
|
|
for (i = 0; devs_ft2232spi[i].vendor_name != NULL; i++) {
|
|
if ((devs_ft2232spi[i].device_id == ft2232_type)
|
|
&& (devs_ft2232spi[i].vendor_id == ft2232_vid))
|
|
return devs_ft2232spi[i].device_name;
|
|
}
|
|
return "unknown device";
|
|
}
|
|
|
|
static const char *get_ft2232_vendorname(int ft2232_vid, int ft2232_type)
|
|
{
|
|
int i;
|
|
for (i = 0; devs_ft2232spi[i].vendor_name != NULL; i++) {
|
|
if ((devs_ft2232spi[i].device_id == ft2232_type)
|
|
&& (devs_ft2232spi[i].vendor_id == ft2232_vid))
|
|
return devs_ft2232spi[i].vendor_name;
|
|
}
|
|
return "unknown vendor";
|
|
}
|
|
|
|
static int send_buf(struct ftdi_context *ftdic, const unsigned char *buf,
|
|
int size)
|
|
{
|
|
int r;
|
|
r = ftdi_write_data(ftdic, (unsigned char *) buf, size);
|
|
if (r < 0) {
|
|
msg_perr("ftdi_write_data: %d, %s\n", r,
|
|
ftdi_get_error_string(ftdic));
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int get_buf(struct ftdi_context *ftdic, const unsigned char *buf,
|
|
int size)
|
|
{
|
|
int r;
|
|
|
|
while (size > 0) {
|
|
r = ftdi_read_data(ftdic, (unsigned char *) buf, size);
|
|
if (r < 0) {
|
|
msg_perr("ftdi_read_data: %d, %s\n", r,
|
|
ftdi_get_error_string(ftdic));
|
|
return 1;
|
|
}
|
|
buf += r;
|
|
size -= r;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ft2232_shutdown(void *data)
|
|
{
|
|
int f;
|
|
struct ft2232_data *spi_data = (struct ft2232_data *) data;
|
|
struct ftdi_context *ftdic = &spi_data->ftdic_context;
|
|
unsigned char buf[3];
|
|
|
|
msg_pdbg("Releasing I/Os\n");
|
|
buf[0] = SET_BITS_LOW;
|
|
buf[1] = 0; /* Output byte ignored */
|
|
buf[2] = 0; /* Pin direction: all inputs */
|
|
if (send_buf(ftdic, buf, 3)) {
|
|
msg_perr("Unable to set pins back inputs: (%s)\n",
|
|
ftdi_get_error_string(ftdic));
|
|
}
|
|
|
|
if ((f = ftdi_usb_close(ftdic)) < 0) {
|
|
msg_perr("Unable to close FTDI device: %d (%s)\n", f,
|
|
ftdi_get_error_string(ftdic));
|
|
return f;
|
|
}
|
|
|
|
free(spi_data);
|
|
return 0;
|
|
}
|
|
|
|
/* Returns 0 upon success, a negative number upon errors. */
|
|
static int ft2232_spi_send_command(const struct flashctx *flash,
|
|
unsigned int writecnt, unsigned int readcnt,
|
|
const unsigned char *writearr,
|
|
unsigned char *readarr)
|
|
{
|
|
struct ft2232_data *spi_data = flash->mst->spi.data;
|
|
struct ftdi_context *ftdic = &spi_data->ftdic_context;
|
|
static unsigned char *buf = NULL;
|
|
/* failed is special. We use bitwise ops, but it is essentially bool. */
|
|
int i = 0, ret = 0, failed = 0;
|
|
size_t bufsize;
|
|
static size_t oldbufsize = 0;
|
|
|
|
if (writecnt > 65536 || readcnt > 65536)
|
|
return SPI_INVALID_LENGTH;
|
|
|
|
/* buf is not used for the response from the chip. */
|
|
bufsize = max(writecnt + 9, 260 + 9);
|
|
/* Never shrink. realloc() calls are expensive. */
|
|
if (!buf || bufsize > oldbufsize) {
|
|
buf = realloc(buf, bufsize);
|
|
if (!buf) {
|
|
msg_perr("Out of memory!\n");
|
|
/* TODO: What to do with buf? */
|
|
return SPI_GENERIC_ERROR;
|
|
}
|
|
oldbufsize = bufsize;
|
|
}
|
|
|
|
/*
|
|
* Minimize USB transfers by packing as many commands as possible
|
|
* together. If we're not expecting to read, we can assert CS#, write,
|
|
* and deassert CS# all in one shot. If reading, we do three separate
|
|
* operations.
|
|
*/
|
|
msg_pspew("Assert CS#\n");
|
|
buf[i++] = SET_BITS_LOW;
|
|
buf[i++] = ~ 0x08 & spi_data->pinlvl; /* assert CS (3rd) bit only */
|
|
buf[i++] = spi_data->pindir;
|
|
|
|
if (writecnt) {
|
|
buf[i++] = MPSSE_DO_WRITE | MPSSE_WRITE_NEG;
|
|
buf[i++] = (writecnt - 1) & 0xff;
|
|
buf[i++] = ((writecnt - 1) >> 8) & 0xff;
|
|
memcpy(buf + i, writearr, writecnt);
|
|
i += writecnt;
|
|
}
|
|
|
|
/*
|
|
* Optionally terminate this batch of commands with a
|
|
* read command, then do the fetch of the results.
|
|
*/
|
|
if (readcnt) {
|
|
buf[i++] = MPSSE_DO_READ;
|
|
buf[i++] = (readcnt - 1) & 0xff;
|
|
buf[i++] = ((readcnt - 1) >> 8) & 0xff;
|
|
ret = send_buf(ftdic, buf, i);
|
|
failed = ret;
|
|
/* We can't abort here, we still have to deassert CS#. */
|
|
if (ret)
|
|
msg_perr("send_buf failed before read: %i\n", ret);
|
|
i = 0;
|
|
if (ret == 0) {
|
|
/*
|
|
* FIXME: This is unreliable. There's no guarantee that
|
|
* we read the response directly after sending the read
|
|
* command. We may be scheduled out etc.
|
|
*/
|
|
ret = get_buf(ftdic, readarr, readcnt);
|
|
failed |= ret;
|
|
/* We can't abort here either. */
|
|
if (ret)
|
|
msg_perr("get_buf failed: %i\n", ret);
|
|
}
|
|
}
|
|
|
|
msg_pspew("De-assert CS#\n");
|
|
buf[i++] = SET_BITS_LOW;
|
|
buf[i++] = spi_data->pinlvl;
|
|
buf[i++] = spi_data->pindir;
|
|
ret = send_buf(ftdic, buf, i);
|
|
failed |= ret;
|
|
if (ret)
|
|
msg_perr("send_buf failed at end: %i\n", ret);
|
|
|
|
return failed ? -1 : 0;
|
|
}
|
|
|
|
static bool ft2232_spi_command_fits(const struct spi_command *cmd, size_t buffer_size)
|
|
{
|
|
const size_t cmd_len = 3; /* same length for any ft2232 command */
|
|
return
|
|
/* commands for CS# assertion and de-assertion: */
|
|
cmd_len + cmd_len
|
|
/* commands for either a write, a read or both: */
|
|
+ (cmd->writecnt && cmd->readcnt ? cmd_len + cmd_len : cmd_len)
|
|
/* payload (only writecnt; readcnt concerns another buffer): */
|
|
+ cmd->writecnt
|
|
<= buffer_size;
|
|
}
|
|
|
|
/* Returns 0 upon success, a negative number upon errors. */
|
|
static int ft2232_spi_send_multicommand(const struct flashctx *flash, struct spi_command *cmds)
|
|
{
|
|
struct ft2232_data *spi_data = flash->mst->spi.data;
|
|
struct ftdi_context *ftdic = &spi_data->ftdic_context;
|
|
static unsigned char buf[FTDI_HW_BUFFER_SIZE];
|
|
size_t i = 0;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Minimize FTDI-calls by packing as many commands as possible together.
|
|
*/
|
|
for (; cmds->writecnt || cmds->readcnt; cmds++) {
|
|
|
|
if (cmds->writecnt > 65536 || cmds->readcnt > 65536)
|
|
return SPI_INVALID_LENGTH;
|
|
|
|
if (!ft2232_spi_command_fits(cmds, FTDI_HW_BUFFER_SIZE - i)) {
|
|
msg_perr("Command does not fit\n");
|
|
return SPI_GENERIC_ERROR;
|
|
}
|
|
|
|
msg_pspew("Assert CS#\n");
|
|
buf[i++] = SET_BITS_LOW;
|
|
buf[i++] = ~ 0x08 & spi_data->pinlvl; /* assert CS (3rd) bit only */
|
|
buf[i++] = spi_data->pindir;
|
|
|
|
/* WREN, OP(PROGRAM, ERASE), ADDR, DATA */
|
|
if (cmds->writecnt) {
|
|
buf[i++] = MPSSE_DO_WRITE | MPSSE_WRITE_NEG;
|
|
buf[i++] = (cmds->writecnt - 1) & 0xff;
|
|
buf[i++] = ((cmds->writecnt - 1) >> 8) & 0xff;
|
|
memcpy(buf + i, cmds->writearr, cmds->writecnt);
|
|
i += cmds->writecnt;
|
|
}
|
|
|
|
/* An optional read command */
|
|
if (cmds->readcnt) {
|
|
buf[i++] = MPSSE_DO_READ;
|
|
buf[i++] = (cmds->readcnt - 1) & 0xff;
|
|
buf[i++] = ((cmds->readcnt - 1) >> 8) & 0xff;
|
|
}
|
|
|
|
/* Add final de-assert CS# */
|
|
msg_pspew("De-assert CS#\n");
|
|
buf[i++] = SET_BITS_LOW;
|
|
buf[i++] = spi_data->pinlvl;
|
|
buf[i++] = spi_data->pindir;
|
|
|
|
/* continue if there is no read-cmd and further cmds exist */
|
|
if (!cmds->readcnt &&
|
|
((cmds + 1)->writecnt || (cmds + 1)->readcnt) &&
|
|
ft2232_spi_command_fits((cmds + 1), FTDI_HW_BUFFER_SIZE - i)) {
|
|
continue;
|
|
}
|
|
|
|
ret = send_buf(ftdic, buf, i);
|
|
i = 0;
|
|
if (ret) {
|
|
msg_perr("send_buf failed: %i\n", ret);
|
|
break;
|
|
}
|
|
|
|
if (cmds->readcnt) {
|
|
ret = get_buf(ftdic, cmds->readarr, cmds->readcnt);
|
|
if (ret) {
|
|
msg_perr("get_buf failed: %i\n", ret);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return ret ? -1 : 0;
|
|
}
|
|
|
|
static const struct spi_master spi_master_ft2232 = {
|
|
.features = SPI_MASTER_4BA,
|
|
.max_data_read = 64 * 1024,
|
|
.max_data_write = 256,
|
|
.command = ft2232_spi_send_command,
|
|
.multicommand = ft2232_spi_send_multicommand,
|
|
.read = default_spi_read,
|
|
.write_256 = default_spi_write_256,
|
|
.write_aai = default_spi_write_aai,
|
|
};
|
|
|
|
/* Returns 0 upon success, a negative number upon errors. */
|
|
static int ft2232_spi_init(void)
|
|
{
|
|
int ret = 0;
|
|
unsigned char buf[512];
|
|
int ft2232_vid = FTDI_VID;
|
|
int ft2232_type = FTDI_FT4232H_PID;
|
|
int channel_count = 4; /* Stores the number of channels of the device. */
|
|
enum ftdi_interface ft2232_interface = INTERFACE_A;
|
|
/*
|
|
* The 'H' chips can run with an internal clock of either 12 MHz or 60 MHz,
|
|
* but the non-H chips can only run at 12 MHz. We disable the divide-by-5
|
|
* prescaler on 'H' chips so they run at 60MHz.
|
|
*/
|
|
uint8_t clock_5x = 1;
|
|
/* In addition to the prescaler mentioned above there is also another
|
|
* configurable one on all versions of the chips. Its divisor div can be
|
|
* set by a 16 bit value x according to the following formula:
|
|
* div = (1 + x) * 2 <-> x = div / 2 - 1
|
|
* Hence the expressible divisors are all even numbers between 2 and
|
|
* 2^17 (=131072) resulting in SCK frequencies of 6 MHz down to about
|
|
* 92 Hz for 12 MHz inputs and 30 MHz down to about 458 Hz for 60 MHz
|
|
* inputs.
|
|
*/
|
|
uint32_t divisor = DEFAULT_DIVISOR;
|
|
int f;
|
|
char *arg;
|
|
double mpsse_clk;
|
|
|
|
uint8_t pinlvl = 0x08;
|
|
uint8_t pindir = 0x0b;
|
|
struct ftdi_context ftdic;
|
|
struct ft2232_data *spi_data;
|
|
|
|
arg = extract_programmer_param("type");
|
|
if (arg) {
|
|
if (!strcasecmp(arg, "2232H")) {
|
|
ft2232_type = FTDI_FT2232H_PID;
|
|
channel_count = 2;
|
|
} else if (!strcasecmp(arg, "4232H")) {
|
|
ft2232_type = FTDI_FT4232H_PID;
|
|
channel_count = 4;
|
|
} else if (!strcasecmp(arg, "232H")) {
|
|
ft2232_type = FTDI_FT232H_PID;
|
|
channel_count = 1;
|
|
} else if (!strcasecmp(arg, "jtagkey")) {
|
|
ft2232_type = AMONTEC_JTAGKEY_PID;
|
|
channel_count = 2;
|
|
/* JTAGkey(2) needs to enable its output via Bit4 / GPIOL0
|
|
* value: 0x18 OE=high, CS=high, DI=low, DO=low, SK=low
|
|
* dir: 0x1b OE=output, CS=output, DI=input, DO=output, SK=output */
|
|
pinlvl = 0x18;
|
|
pindir = 0x1b;
|
|
} else if (!strcasecmp(arg, "picotap")) {
|
|
ft2232_vid = GOEPEL_VID;
|
|
ft2232_type = GOEPEL_PICOTAP_PID;
|
|
channel_count = 2;
|
|
} else if (!strcasecmp(arg, "tumpa")) {
|
|
/* Interface A is SPI1, B is SPI2. */
|
|
ft2232_type = TIAO_TUMPA_PID;
|
|
channel_count = 2;
|
|
} else if (!strcasecmp(arg, "tumpalite")) {
|
|
/* Only one channel is used on lite edition */
|
|
ft2232_type = TIAO_TUMPA_LITE_PID;
|
|
channel_count = 1;
|
|
} else if (!strcasecmp(arg, "busblaster")) {
|
|
/* In its default configuration it is a jtagkey clone */
|
|
ft2232_type = FTDI_FT2232H_PID;
|
|
channel_count = 2;
|
|
pinlvl = 0x18;
|
|
pindir = 0x1b;
|
|
} else if (!strcasecmp(arg, "openmoko")) {
|
|
ft2232_vid = FIC_VID;
|
|
ft2232_type = OPENMOKO_DBGBOARD_PID;
|
|
channel_count = 2;
|
|
} else if (!strcasecmp(arg, "arm-usb-ocd")) {
|
|
ft2232_vid = OLIMEX_VID;
|
|
ft2232_type = OLIMEX_ARM_OCD_PID;
|
|
channel_count = 2;
|
|
/* arm-usb-ocd(-h) has an output buffer that needs to be enabled by pulling ADBUS4 low.
|
|
* value: 0x08 #OE=low, CS=high, DI=low, DO=low, SK=low
|
|
* dir: 0x1b #OE=output, CS=output, DI=input, DO=output, SK=output */
|
|
pinlvl = 0x08;
|
|
pindir = 0x1b;
|
|
} else if (!strcasecmp(arg, "arm-usb-tiny")) {
|
|
ft2232_vid = OLIMEX_VID;
|
|
ft2232_type = OLIMEX_ARM_TINY_PID;
|
|
channel_count = 2;
|
|
} else if (!strcasecmp(arg, "arm-usb-ocd-h")) {
|
|
ft2232_vid = OLIMEX_VID;
|
|
ft2232_type = OLIMEX_ARM_OCD_H_PID;
|
|
channel_count = 2;
|
|
/* See arm-usb-ocd */
|
|
pinlvl = 0x08;
|
|
pindir = 0x1b;
|
|
} else if (!strcasecmp(arg, "arm-usb-tiny-h")) {
|
|
ft2232_vid = OLIMEX_VID;
|
|
ft2232_type = OLIMEX_ARM_TINY_H_PID;
|
|
channel_count = 2;
|
|
} else if (!strcasecmp(arg, "google-servo")) {
|
|
ft2232_vid = GOOGLE_VID;
|
|
ft2232_type = GOOGLE_SERVO_PID;
|
|
} else if (!strcasecmp(arg, "google-servo-v2")) {
|
|
ft2232_vid = GOOGLE_VID;
|
|
ft2232_type = GOOGLE_SERVO_V2_PID1;
|
|
/* Default divisor is too fast, and chip ID fails */
|
|
divisor = 6;
|
|
} else if (!strcasecmp(arg, "google-servo-v2-legacy")) {
|
|
ft2232_vid = GOOGLE_VID;
|
|
ft2232_type = GOOGLE_SERVO_V2_PID0;
|
|
} else if (!strcasecmp(arg, "flyswatter")) {
|
|
ft2232_type = FTDI_FT2232H_PID;
|
|
channel_count = 2;
|
|
/* Flyswatter and Flyswatter-2 require GPIO bits 0x80
|
|
* and 0x40 to be driven low to enable output buffers */
|
|
pindir = 0xcb;
|
|
} else {
|
|
msg_perr("Error: Invalid device type specified.\n");
|
|
free(arg);
|
|
return -1;
|
|
}
|
|
}
|
|
free(arg);
|
|
|
|
arg = extract_programmer_param("port");
|
|
if (arg) {
|
|
switch (toupper((unsigned char)*arg)) {
|
|
case 'A':
|
|
ft2232_interface = INTERFACE_A;
|
|
break;
|
|
case 'B':
|
|
ft2232_interface = INTERFACE_B;
|
|
if (channel_count < 2)
|
|
channel_count = -1;
|
|
break;
|
|
case 'C':
|
|
ft2232_interface = INTERFACE_C;
|
|
if (channel_count < 3)
|
|
channel_count = -1;
|
|
break;
|
|
case 'D':
|
|
ft2232_interface = INTERFACE_D;
|
|
if (channel_count < 4)
|
|
channel_count = -1;
|
|
break;
|
|
default:
|
|
channel_count = -1;
|
|
break;
|
|
}
|
|
if (channel_count < 0 || strlen(arg) != 1) {
|
|
msg_perr("Error: Invalid channel/port/interface specified: \"%s\".\n", arg);
|
|
free(arg);
|
|
return -2;
|
|
}
|
|
}
|
|
free(arg);
|
|
|
|
arg = extract_programmer_param("divisor");
|
|
if (arg && strlen(arg)) {
|
|
unsigned int temp = 0;
|
|
char *endptr;
|
|
temp = strtoul(arg, &endptr, 10);
|
|
if (*endptr || temp < 2 || temp > 131072 || temp & 0x1) {
|
|
msg_perr("Error: Invalid SPI frequency divisor specified: \"%s\".\n"
|
|
"Valid are even values between 2 and 131072.\n", arg);
|
|
free(arg);
|
|
return -2;
|
|
}
|
|
divisor = (uint32_t)temp;
|
|
}
|
|
free(arg);
|
|
|
|
/* Allows setting multiple GPIOL pins to high, for example: csgpiol=012 */
|
|
arg = extract_programmer_param("csgpiol");
|
|
if (arg) {
|
|
unsigned int ngpios = strlen(arg);
|
|
for (unsigned int i = 0; i <= ngpios; i++) {
|
|
int temp = arg[i] - '0';
|
|
if (ngpios == 0 || (ngpios != i && (temp < 0 || temp > 3))) {
|
|
msg_perr("Error: Invalid GPIOLs specified: \"%s\".\n"
|
|
"Valid values are numbers between 0 and 3. "
|
|
"Multiple GPIOLs can be specified.\n", arg);
|
|
free(arg);
|
|
return -2;
|
|
} else {
|
|
unsigned int pin = temp + 4;
|
|
pinlvl |= 1 << pin;
|
|
pindir |= 1 << pin;
|
|
}
|
|
}
|
|
}
|
|
free(arg);
|
|
|
|
/* Allows setting GPIOL pins high, low or input (high-z) */
|
|
arg = extract_programmer_param("gpiol");
|
|
if (arg) {
|
|
int ok = 0;
|
|
if (strlen(arg) == 4) {
|
|
ok = 1;
|
|
for (int i = 0; i < 4; i++) {
|
|
unsigned int pin = i + 4;
|
|
switch (toupper(arg[i])) {
|
|
case 'H':
|
|
pinlvl |= 1 << pin;
|
|
pindir |= 1 << pin;
|
|
break;
|
|
case 'L':
|
|
pinlvl &= ~(1 << pin);
|
|
pindir |= 1 << pin;
|
|
break;
|
|
case 'Z':
|
|
pindir &= ~(1 << pin);
|
|
break;
|
|
case 'X':
|
|
break;
|
|
default:
|
|
ok = 0;
|
|
}
|
|
}
|
|
}
|
|
if (!ok) {
|
|
msg_perr("Error: Invalid GPIOLs specified: \"%s\".\n"
|
|
"Valid values are 4 character strings of H, L, Z and X.\n"
|
|
" H - Set GPIOL output high\n"
|
|
" L - Set GPIOL output low\n"
|
|
" Z - Set GPIOL as input (high impedance)\n"
|
|
" X - Leave as programmer default\n"
|
|
"Example: gpiol=LZXH drives GPIOL 0 low, and GPIOL 3 high, sets GPIOL 1\n"
|
|
"to an input and leaves GPIOL 2 set according to the programmer type.\n", arg);
|
|
free(arg);
|
|
return -2;
|
|
}
|
|
}
|
|
free(arg);
|
|
|
|
msg_pdbg("Using device type %s %s ",
|
|
get_ft2232_vendorname(ft2232_vid, ft2232_type),
|
|
get_ft2232_devicename(ft2232_vid, ft2232_type));
|
|
msg_pdbg("channel %s.\n",
|
|
(ft2232_interface == INTERFACE_A) ? "A" :
|
|
(ft2232_interface == INTERFACE_B) ? "B" :
|
|
(ft2232_interface == INTERFACE_C) ? "C" : "D");
|
|
|
|
if (ftdi_init(&ftdic) < 0) {
|
|
msg_perr("ftdi_init failed.\n");
|
|
return -3;
|
|
}
|
|
|
|
if (ftdi_set_interface(&ftdic, ft2232_interface) < 0) {
|
|
msg_perr("Unable to select channel (%s).\n", ftdi_get_error_string(&ftdic));
|
|
}
|
|
|
|
arg = extract_programmer_param("serial");
|
|
f = ftdi_usb_open_desc(&ftdic, ft2232_vid, ft2232_type, NULL, arg);
|
|
free(arg);
|
|
|
|
if (f < 0 && f != -5) {
|
|
msg_perr("Unable to open FTDI device: %d (%s)\n", f,
|
|
ftdi_get_error_string(&ftdic));
|
|
return -4;
|
|
}
|
|
|
|
if (ftdic.type != TYPE_2232H && ftdic.type != TYPE_4232H && ftdic.type != TYPE_232H) {
|
|
msg_pdbg("FTDI chip type %d is not high-speed.\n", ftdic.type);
|
|
clock_5x = 0;
|
|
}
|
|
|
|
if (ftdi_usb_reset(&ftdic) < 0) {
|
|
msg_perr("Unable to reset FTDI device (%s).\n", ftdi_get_error_string(&ftdic));
|
|
}
|
|
|
|
if (ftdi_set_latency_timer(&ftdic, 2) < 0) {
|
|
msg_perr("Unable to set latency timer (%s).\n", ftdi_get_error_string(&ftdic));
|
|
}
|
|
|
|
if (ftdi_set_bitmode(&ftdic, 0x00, BITMODE_BITBANG_SPI) < 0) {
|
|
msg_perr("Unable to set bitmode to SPI (%s).\n", ftdi_get_error_string(&ftdic));
|
|
}
|
|
|
|
if (clock_5x) {
|
|
msg_pdbg("Disable divide-by-5 front stage\n");
|
|
buf[0] = DIS_DIV_5;
|
|
if (send_buf(&ftdic, buf, 1)) {
|
|
ret = -5;
|
|
goto ftdi_err;
|
|
}
|
|
mpsse_clk = 60.0;
|
|
} else {
|
|
mpsse_clk = 12.0;
|
|
}
|
|
|
|
msg_pdbg("Set clock divisor\n");
|
|
buf[0] = TCK_DIVISOR;
|
|
buf[1] = (divisor / 2 - 1) & 0xff;
|
|
buf[2] = ((divisor / 2 - 1) >> 8) & 0xff;
|
|
if (send_buf(&ftdic, buf, 3)) {
|
|
ret = -6;
|
|
goto ftdi_err;
|
|
}
|
|
|
|
msg_pdbg("MPSSE clock: %f MHz, divisor: %u, SPI clock: %f MHz\n",
|
|
mpsse_clk, divisor, (double)(mpsse_clk / divisor));
|
|
|
|
/* Disconnect TDI/DO to TDO/DI for loopback. */
|
|
msg_pdbg("No loopback of TDI/DO TDO/DI\n");
|
|
buf[0] = LOOPBACK_END;
|
|
if (send_buf(&ftdic, buf, 1)) {
|
|
ret = -7;
|
|
goto ftdi_err;
|
|
}
|
|
|
|
msg_pdbg("Set data bits\n");
|
|
buf[0] = SET_BITS_LOW;
|
|
buf[1] = pinlvl;
|
|
buf[2] = pindir;
|
|
if (send_buf(&ftdic, buf, 3)) {
|
|
ret = -8;
|
|
goto ftdi_err;
|
|
}
|
|
|
|
spi_data = calloc(1, sizeof(*spi_data));
|
|
if (!spi_data) {
|
|
msg_perr("Unable to allocate space for SPI master data\n");
|
|
return SPI_GENERIC_ERROR;
|
|
}
|
|
spi_data->pinlvl = pinlvl;
|
|
spi_data->pindir = pindir;
|
|
spi_data->ftdic_context = ftdic;
|
|
|
|
if (register_shutdown(ft2232_shutdown, spi_data)) {
|
|
free(spi_data);
|
|
goto ftdi_err;
|
|
}
|
|
register_spi_master(&spi_master_ft2232, spi_data);
|
|
|
|
return 0;
|
|
|
|
ftdi_err:
|
|
if ((f = ftdi_usb_close(&ftdic)) < 0) {
|
|
msg_perr("Unable to close FTDI device: %d (%s)\n", f,
|
|
ftdi_get_error_string(&ftdic));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
const struct programmer_entry programmer_ft2232_spi = {
|
|
.name = "ft2232_spi",
|
|
.type = USB,
|
|
.devs.dev = devs_ft2232spi,
|
|
.init = ft2232_spi_init,
|
|
.map_flash_region = fallback_map,
|
|
.unmap_flash_region = fallback_unmap,
|
|
.delay = internal_delay,
|
|
};
|
|
#endif
|