1
0
mirror of https://review.coreboot.org/flashrom.git synced 2025-04-27 15:12:36 +02:00
flashrom/spi.c
Carl-Daniel Hailfinger d0478299b1 Add SPI multicommand infrastructure
Some SPI opcodes need to be sent in direct succession after each other
without any chip deselect happening in between. A prominent example is
WREN (Write Enable) directly before PP (Page Program). Intel calls the
first opcode in such a row "preopcode".

Right now, we ignore the direct succession requirement completely and it
works pretty well because most onboard SPI masters have a timing or
heuristics which make the problem disappear.
The FT2232 SPI flasher is different. Since it is an external flasher,
timing is very different to what we can expect from onboard flashers and
this leads to failure at slow speeds.

This patch allows any function to submit multiple SPI commands in a
stream to any flasher. Support in the individual flashers isn't
implemented yet, so there is one generic function which passes the each
command in the stream one-by-one to the command functions of the
selected SPI flash driver.

Tested-by: Jakob Bornecrantz <wallbraker@gmail.com>

Corresponding to flashrom svn r645.

Signed-off-by: Carl-Daniel Hailfinger <c-d.hailfinger.devel.2006@gmx.net>
Acked-by: Jakob Bornecrantz <wallbraker@gmail.com>
2009-07-10 21:08:55 +00:00

881 lines
23 KiB
C

/*
* This file is part of the flashrom project.
*
* Copyright (C) 2007, 2008, 2009 Carl-Daniel Hailfinger
* Copyright (C) 2008 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Contains the generic SPI framework
*/
#include <string.h>
#include "flash.h"
#include "flashchips.h"
#include "spi.h"
enum spi_controller spi_controller = SPI_CONTROLLER_NONE;
void *spibar = NULL;
void spi_prettyprint_status_register(struct flashchip *flash);
int spi_send_command(unsigned int writecnt, unsigned int readcnt,
const unsigned char *writearr, unsigned char *readarr)
{
switch (spi_controller) {
case SPI_CONTROLLER_IT87XX:
return it8716f_spi_send_command(writecnt, readcnt, writearr,
readarr);
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
return ich_spi_send_command(writecnt, readcnt, writearr, readarr);
case SPI_CONTROLLER_SB600:
return sb600_spi_send_command(writecnt, readcnt, writearr, readarr);
case SPI_CONTROLLER_WBSIO:
return wbsio_spi_send_command(writecnt, readcnt, writearr, readarr);
case SPI_CONTROLLER_FT2232:
return ft2232_spi_send_command(writecnt, readcnt, writearr, readarr);
case SPI_CONTROLLER_DUMMY:
return dummy_spi_send_command(writecnt, readcnt, writearr, readarr);
default:
printf_debug
("%s called, but no SPI chipset/strapping detected\n",
__FUNCTION__);
}
return 1;
}
int spi_send_multicommand(struct spi_command *spicommands)
{
int res = 0;
while ((spicommands->writecnt || spicommands->readcnt) && !res) {
res = spi_send_command(spicommands->writecnt, spicommands->readcnt,
spicommands->writearr, spicommands->readarr);
}
return res;
}
static int spi_rdid(unsigned char *readarr, int bytes)
{
const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
int ret;
int i;
ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
if (ret)
return ret;
printf_debug("RDID returned");
for (i = 0; i < bytes; i++)
printf_debug(" 0x%02x", readarr[i]);
printf_debug("\n");
return 0;
}
static int spi_rems(unsigned char *readarr)
{
unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
uint32_t readaddr;
int ret;
ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
if (ret == SPI_INVALID_ADDRESS) {
/* Find the lowest even address allowed for reads. */
readaddr = (spi_get_valid_read_addr() + 1) & ~1;
cmd[1] = (readaddr >> 16) & 0xff,
cmd[2] = (readaddr >> 8) & 0xff,
cmd[3] = (readaddr >> 0) & 0xff,
ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
}
if (ret)
return ret;
printf_debug("REMS returned %02x %02x.\n", readarr[0], readarr[1]);
return 0;
}
static int spi_res(unsigned char *readarr)
{
unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
uint32_t readaddr;
int ret;
ret = spi_send_command(sizeof(cmd), JEDEC_RES_INSIZE, cmd, readarr);
if (ret == SPI_INVALID_ADDRESS) {
/* Find the lowest even address allowed for reads. */
readaddr = (spi_get_valid_read_addr() + 1) & ~1;
cmd[1] = (readaddr >> 16) & 0xff,
cmd[2] = (readaddr >> 8) & 0xff,
cmd[3] = (readaddr >> 0) & 0xff,
ret = spi_send_command(sizeof(cmd), JEDEC_RES_INSIZE, cmd, readarr);
}
if (ret)
return ret;
printf_debug("RES returned %02x.\n", readarr[0]);
return 0;
}
int spi_write_enable(void)
{
const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
int result;
/* Send WREN (Write Enable) */
result = spi_send_command(sizeof(cmd), 0, cmd, NULL);
if (result)
printf_debug("%s failed", __func__);
if (result == SPI_INVALID_OPCODE) {
switch (spi_controller) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
printf_debug(" due to SPI master limitation, ignoring"
" and hoping it will be run as PREOP\n");
return 0;
default:
break;
}
}
if (result)
printf_debug("\n");
return result;
}
int spi_write_disable(void)
{
const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
/* Send WRDI (Write Disable) */
return spi_send_command(sizeof(cmd), 0, cmd, NULL);
}
static int probe_spi_rdid_generic(struct flashchip *flash, int bytes)
{
unsigned char readarr[4];
uint32_t id1;
uint32_t id2;
if (spi_rdid(readarr, bytes))
return 0;
if (!oddparity(readarr[0]))
printf_debug("RDID byte 0 parity violation.\n");
/* Check if this is a continuation vendor ID */
if (readarr[0] == 0x7f) {
if (!oddparity(readarr[1]))
printf_debug("RDID byte 1 parity violation.\n");
id1 = (readarr[0] << 8) | readarr[1];
id2 = readarr[2];
if (bytes > 3) {
id2 <<= 8;
id2 |= readarr[3];
}
} else {
id1 = readarr[0];
id2 = (readarr[1] << 8) | readarr[2];
}
printf_debug("%s: id1 0x%02x, id2 0x%02x\n", __FUNCTION__, id1, id2);
if (id1 == flash->manufacture_id && id2 == flash->model_id) {
/* Print the status register to tell the
* user about possible write protection.
*/
spi_prettyprint_status_register(flash);
return 1;
}
/* Test if this is a pure vendor match. */
if (id1 == flash->manufacture_id &&
GENERIC_DEVICE_ID == flash->model_id)
return 1;
return 0;
}
int probe_spi_rdid(struct flashchip *flash)
{
return probe_spi_rdid_generic(flash, 3);
}
/* support 4 bytes flash ID */
int probe_spi_rdid4(struct flashchip *flash)
{
/* only some SPI chipsets support 4 bytes commands */
switch (spi_controller) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
case SPI_CONTROLLER_SB600:
case SPI_CONTROLLER_WBSIO:
case SPI_CONTROLLER_FT2232:
case SPI_CONTROLLER_DUMMY:
return probe_spi_rdid_generic(flash, 4);
default:
printf_debug("4b ID not supported on this SPI controller\n");
}
return 0;
}
int probe_spi_rems(struct flashchip *flash)
{
unsigned char readarr[JEDEC_REMS_INSIZE];
uint32_t id1, id2;
if (spi_rems(readarr))
return 0;
id1 = readarr[0];
id2 = readarr[1];
printf_debug("%s: id1 0x%x, id2 0x%x\n", __FUNCTION__, id1, id2);
if (id1 == flash->manufacture_id && id2 == flash->model_id) {
/* Print the status register to tell the
* user about possible write protection.
*/
spi_prettyprint_status_register(flash);
return 1;
}
/* Test if this is a pure vendor match. */
if (id1 == flash->manufacture_id &&
GENERIC_DEVICE_ID == flash->model_id)
return 1;
return 0;
}
int probe_spi_res(struct flashchip *flash)
{
unsigned char readarr[3];
uint32_t id2;
/* Check if RDID was successful and did not return 0xff 0xff 0xff.
* In that case, RES is pointless.
*/
if (!spi_rdid(readarr, 3) && ((readarr[0] != 0xff) ||
(readarr[1] != 0xff) || (readarr[2] != 0xff)))
return 0;
if (spi_res(readarr))
return 0;
id2 = readarr[0];
printf_debug("%s: id 0x%x\n", __FUNCTION__, id2);
if (id2 != flash->model_id)
return 0;
/* Print the status register to tell the
* user about possible write protection.
*/
spi_prettyprint_status_register(flash);
return 1;
}
uint8_t spi_read_status_register(void)
{
const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR };
unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
int ret;
/* Read Status Register */
if (spi_controller == SPI_CONTROLLER_SB600) {
/* SB600 uses a different way to read status register. */
return sb600_read_status_register();
} else {
ret = spi_send_command(sizeof(cmd), sizeof(readarr), cmd, readarr);
if (ret)
printf_debug("RDSR failed!\n");
}
return readarr[0];
}
/* Prettyprint the status register. Common definitions. */
void spi_prettyprint_status_register_common(uint8_t status)
{
printf_debug("Chip status register: Bit 5 / Block Protect 3 (BP3) is "
"%sset\n", (status & (1 << 5)) ? "" : "not ");
printf_debug("Chip status register: Bit 4 / Block Protect 2 (BP2) is "
"%sset\n", (status & (1 << 4)) ? "" : "not ");
printf_debug("Chip status register: Bit 3 / Block Protect 1 (BP1) is "
"%sset\n", (status & (1 << 3)) ? "" : "not ");
printf_debug("Chip status register: Bit 2 / Block Protect 0 (BP0) is "
"%sset\n", (status & (1 << 2)) ? "" : "not ");
printf_debug("Chip status register: Write Enable Latch (WEL) is "
"%sset\n", (status & (1 << 1)) ? "" : "not ");
printf_debug("Chip status register: Write In Progress (WIP/BUSY) is "
"%sset\n", (status & (1 << 0)) ? "" : "not ");
}
/* Prettyprint the status register. Works for
* ST M25P series
* MX MX25L series
*/
void spi_prettyprint_status_register_st_m25p(uint8_t status)
{
printf_debug("Chip status register: Status Register Write Disable "
"(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not ");
printf_debug("Chip status register: Bit 6 is "
"%sset\n", (status & (1 << 6)) ? "" : "not ");
spi_prettyprint_status_register_common(status);
}
void spi_prettyprint_status_register_sst25(uint8_t status)
{
printf_debug("Chip status register: Block Protect Write Disable "
"(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not ");
printf_debug("Chip status register: Auto Address Increment Programming "
"(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not ");
spi_prettyprint_status_register_common(status);
}
/* Prettyprint the status register. Works for
* SST 25VF016
*/
void spi_prettyprint_status_register_sst25vf016(uint8_t status)
{
const char *bpt[] = {
"none",
"1F0000H-1FFFFFH",
"1E0000H-1FFFFFH",
"1C0000H-1FFFFFH",
"180000H-1FFFFFH",
"100000H-1FFFFFH",
"all", "all"
};
spi_prettyprint_status_register_sst25(status);
printf_debug("Resulting block protection : %s\n",
bpt[(status & 0x1c) >> 2]);
}
void spi_prettyprint_status_register_sst25vf040b(uint8_t status)
{
const char *bpt[] = {
"none",
"0x70000-0x7ffff",
"0x60000-0x7ffff",
"0x40000-0x7ffff",
"all blocks", "all blocks", "all blocks", "all blocks"
};
spi_prettyprint_status_register_sst25(status);
printf_debug("Resulting block protection : %s\n",
bpt[(status & 0x1c) >> 2]);
}
void spi_prettyprint_status_register(struct flashchip *flash)
{
uint8_t status;
status = spi_read_status_register();
printf_debug("Chip status register is %02x\n", status);
switch (flash->manufacture_id) {
case ST_ID:
if (((flash->model_id & 0xff00) == 0x2000) ||
((flash->model_id & 0xff00) == 0x2500))
spi_prettyprint_status_register_st_m25p(status);
break;
case MX_ID:
if ((flash->model_id & 0xff00) == 0x2000)
spi_prettyprint_status_register_st_m25p(status);
break;
case SST_ID:
switch (flash->model_id) {
case 0x2541:
spi_prettyprint_status_register_sst25vf016(status);
break;
case 0x8d:
case 0x258d:
spi_prettyprint_status_register_sst25vf040b(status);
break;
default:
spi_prettyprint_status_register_sst25(status);
break;
}
break;
}
}
int spi_chip_erase_60(struct flashchip *flash)
{
const unsigned char cmd[JEDEC_CE_60_OUTSIZE] = {JEDEC_CE_60};
int result;
result = spi_disable_blockprotect();
if (result) {
printf_debug("spi_disable_blockprotect failed\n");
return result;
}
result = spi_write_enable();
if (result)
return result;
/* Send CE (Chip Erase) */
result = spi_send_command(sizeof(cmd), 0, cmd, NULL);
if (result) {
printf_debug("spi_chip_erase_60 failed sending erase\n");
return result;
}
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 1-85 s, so wait in 1 s steps.
*/
/* FIXME: We assume spi_read_status_register will never fail. */
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(1000 * 1000);
if (check_erased_range(flash, 0, flash->total_size * 1024)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
int spi_chip_erase_c7(struct flashchip *flash)
{
const unsigned char cmd[JEDEC_CE_C7_OUTSIZE] = { JEDEC_CE_C7 };
int result;
result = spi_disable_blockprotect();
if (result) {
printf_debug("spi_disable_blockprotect failed\n");
return result;
}
result = spi_write_enable();
if (result)
return result;
/* Send CE (Chip Erase) */
result = spi_send_command(sizeof(cmd), 0, cmd, NULL);
if (result) {
printf_debug("spi_chip_erase_60 failed sending erase\n");
return result;
}
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 1-85 s, so wait in 1 s steps.
*/
/* FIXME: We assume spi_read_status_register will never fail. */
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(1000 * 1000);
if (check_erased_range(flash, 0, flash->total_size * 1024)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
int spi_chip_erase_60_c7(struct flashchip *flash)
{
int result;
result = spi_chip_erase_60(flash);
if (result) {
printf_debug("spi_chip_erase_60 failed, trying c7\n");
result = spi_chip_erase_c7(flash);
}
return result;
}
int spi_block_erase_52(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
unsigned char cmd[JEDEC_BE_52_OUTSIZE] = {JEDEC_BE_52, };
int result;
cmd[1] = (addr & 0x00ff0000) >> 16;
cmd[2] = (addr & 0x0000ff00) >> 8;
cmd[3] = (addr & 0x000000ff);
result = spi_write_enable();
if (result)
return result;
/* Send BE (Block Erase) */
spi_send_command(sizeof(cmd), 0, cmd, NULL);
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 100-4000 ms, so wait in 100 ms steps.
*/
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(100 * 1000);
if (check_erased_range(flash, addr, blocklen)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
/* Block size is usually
* 64k for Macronix
* 32k for SST
* 4-32k non-uniform for EON
*/
int spi_block_erase_d8(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
unsigned char cmd[JEDEC_BE_D8_OUTSIZE] = { JEDEC_BE_D8, };
int result;
cmd[1] = (addr & 0x00ff0000) >> 16;
cmd[2] = (addr & 0x0000ff00) >> 8;
cmd[3] = (addr & 0x000000ff);
result = spi_write_enable();
if (result)
return result;
/* Send BE (Block Erase) */
spi_send_command(sizeof(cmd), 0, cmd, NULL);
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 100-4000 ms, so wait in 100 ms steps.
*/
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(100 * 1000);
if (check_erased_range(flash, addr, blocklen)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
int spi_chip_erase_d8(struct flashchip *flash)
{
int i, rc = 0;
int total_size = flash->total_size * 1024;
int erase_size = 64 * 1024;
spi_disable_blockprotect();
printf("Erasing chip: \n");
for (i = 0; i < total_size / erase_size; i++) {
rc = spi_block_erase_d8(flash, i * erase_size, erase_size);
if (rc) {
printf("Error erasing block at 0x%x\n", i);
break;
}
}
printf("\n");
return rc;
}
/* Sector size is usually 4k, though Macronix eliteflash has 64k */
int spi_block_erase_20(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
unsigned char cmd[JEDEC_SE_OUTSIZE] = { JEDEC_SE, };
int result;
cmd[1] = (addr & 0x00ff0000) >> 16;
cmd[2] = (addr & 0x0000ff00) >> 8;
cmd[3] = (addr & 0x000000ff);
result = spi_write_enable();
if (result)
return result;
/* Send SE (Sector Erase) */
spi_send_command(sizeof(cmd), 0, cmd, NULL);
/* Wait until the Write-In-Progress bit is cleared.
* This usually takes 15-800 ms, so wait in 10 ms steps.
*/
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(10 * 1000);
if (check_erased_range(flash, addr, blocklen)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
return 0;
}
int spi_block_erase_60(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
fprintf(stderr, "%s called with incorrect arguments\n", __func__);
return -1;
}
return spi_chip_erase_60(flash);
}
int spi_block_erase_c7(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
{
if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
fprintf(stderr, "%s called with incorrect arguments\n", __func__);
return -1;
}
return spi_chip_erase_c7(flash);
}
int spi_write_status_enable(void)
{
const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR };
int result;
/* Send EWSR (Enable Write Status Register). */
result = spi_send_command(sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL);
if (result)
printf_debug("%s failed", __func__);
if (result == SPI_INVALID_OPCODE) {
switch (spi_controller) {
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
printf_debug(" due to SPI master limitation, ignoring"
" and hoping it will be run as PREOP\n");
return 0;
default:
break;
}
}
if (result)
printf_debug("\n");
return result;
}
/*
* This is according the SST25VF016 datasheet, who knows it is more
* generic that this...
*/
int spi_write_status_register(int status)
{
const unsigned char cmd[JEDEC_WRSR_OUTSIZE] =
{ JEDEC_WRSR, (unsigned char)status };
/* Send WRSR (Write Status Register) */
return spi_send_command(sizeof(cmd), 0, cmd, NULL);
}
void spi_byte_program(int address, uint8_t byte)
{
const unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE] = {
JEDEC_BYTE_PROGRAM,
(address >> 16) & 0xff,
(address >> 8) & 0xff,
(address >> 0) & 0xff,
byte
};
/* Send Byte-Program */
spi_send_command(sizeof(cmd), 0, cmd, NULL);
}
int spi_nbyte_program(int address, uint8_t *bytes, int len)
{
unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
JEDEC_BYTE_PROGRAM,
(address >> 16) & 0xff,
(address >> 8) & 0xff,
(address >> 0) & 0xff,
};
if (len > 256) {
printf_debug ("%s called for too long a write\n",
__FUNCTION__);
return 1;
}
memcpy(&cmd[4], bytes, len);
/* Send Byte-Program */
return spi_send_command(4 + len, 0, cmd, NULL);
}
int spi_disable_blockprotect(void)
{
uint8_t status;
int result;
status = spi_read_status_register();
/* If there is block protection in effect, unprotect it first. */
if ((status & 0x3c) != 0) {
printf_debug("Some block protection in effect, disabling\n");
result = spi_write_status_enable();
if (result) {
printf_debug("spi_write_status_enable failed\n");
return result;
}
result = spi_write_status_register(status & ~0x3c);
if (result) {
printf_debug("spi_write_status_register failed\n");
return result;
}
}
return 0;
}
int spi_nbyte_read(int address, uint8_t *bytes, int len)
{
const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
JEDEC_READ,
(address >> 16) & 0xff,
(address >> 8) & 0xff,
(address >> 0) & 0xff,
};
/* Send Read */
return spi_send_command(sizeof(cmd), len, cmd, bytes);
}
/*
* Read a complete flash chip.
* Each page is read separately in chunks with a maximum size of chunksize.
*/
int spi_read_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize)
{
int rc = 0;
int i, j, starthere, lenhere;
int page_size = flash->page_size;
int toread;
/* Warning: This loop has a very unusual condition and body.
* The loop needs to go through each page with at least one affected
* byte. The lowest page number is (start / page_size) since that
* division rounds down. The highest page number we want is the page
* where the last byte of the range lives. That last byte has the
* address (start + len - 1), thus the highest page number is
* (start + len - 1) / page_size. Since we want to include that last
* page as well, the loop condition uses <=.
*/
for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
/* Byte position of the first byte in the range in this page. */
/* starthere is an offset to the base address of the chip. */
starthere = max(start, i * page_size);
/* Length of bytes in the range in this page. */
lenhere = min(start + len, (i + 1) * page_size) - starthere;
for (j = 0; j < lenhere; j += chunksize) {
toread = min(chunksize, lenhere - j);
rc = spi_nbyte_read(starthere + j, buf + starthere - start + j, toread);
if (rc)
break;
}
if (rc)
break;
}
return rc;
}
int spi_chip_read(struct flashchip *flash, uint8_t *buf, int start, int len)
{
switch (spi_controller) {
case SPI_CONTROLLER_IT87XX:
return it8716f_spi_chip_read(flash, buf, start, len);
case SPI_CONTROLLER_SB600:
return sb600_spi_read(flash, buf, start, len);
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
return ich_spi_read(flash, buf, start, len);
case SPI_CONTROLLER_WBSIO:
return wbsio_spi_read(flash, buf, start, len);
case SPI_CONTROLLER_FT2232:
return ft2232_spi_read(flash, buf, start, len);
default:
printf_debug
("%s called, but no SPI chipset/strapping detected\n",
__FUNCTION__);
}
return 1;
}
/*
* Program chip using byte programming. (SLOW!)
* This is for chips which can only handle one byte writes
* and for chips where memory mapped programming is impossible
* (e.g. due to size constraints in IT87* for over 512 kB)
*/
int spi_chip_write_1(struct flashchip *flash, uint8_t *buf)
{
int total_size = 1024 * flash->total_size;
int i;
spi_disable_blockprotect();
for (i = 0; i < total_size; i++) {
spi_write_enable();
spi_byte_program(i, buf[i]);
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(10);
}
return 0;
}
/*
* Program chip using page (256 bytes) programming.
* Some SPI masters can't do this, they use single byte programming instead.
*/
int spi_chip_write_256(struct flashchip *flash, uint8_t *buf)
{
switch (spi_controller) {
case SPI_CONTROLLER_IT87XX:
return it8716f_spi_chip_write_256(flash, buf);
case SPI_CONTROLLER_SB600:
return sb600_spi_write_1(flash, buf);
case SPI_CONTROLLER_ICH7:
case SPI_CONTROLLER_ICH9:
case SPI_CONTROLLER_VIA:
return ich_spi_write_256(flash, buf);
case SPI_CONTROLLER_WBSIO:
return wbsio_spi_write_1(flash, buf);
case SPI_CONTROLLER_FT2232:
return ft2232_spi_write_256(flash, buf);
default:
printf_debug
("%s called, but no SPI chipset/strapping detected\n",
__FUNCTION__);
}
return 1;
}
uint32_t spi_get_valid_read_addr(void)
{
/* Need to return BBAR for ICH chipsets. */
return 0;
}
int spi_aai_write(struct flashchip *flash, uint8_t *buf)
{
uint32_t pos = 2, size = flash->total_size * 1024;
unsigned char w[6] = {0xad, 0, 0, 0, buf[0], buf[1]};
int result;
switch (spi_controller) {
case SPI_CONTROLLER_WBSIO:
fprintf(stderr, "%s: impossible with Winbond SPI masters,"
" degrading to byte program\n", __func__);
return spi_chip_write_1(flash, buf);
default:
break;
}
if (flash->erase(flash)) {
fprintf(stderr, "ERASE FAILED!\n");
return -1;
}
result = spi_write_enable();
if (result)
return result;
spi_send_command(6, 0, w, NULL);
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(5); /* SST25VF040B Tbp is max 10us */
while (pos < size) {
w[1] = buf[pos++];
w[2] = buf[pos++];
spi_send_command(3, 0, w, NULL);
while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
programmer_delay(5); /* SST25VF040B Tbp is max 10us */
}
spi_write_disable();
return 0;
}